A Parallel Interleaved File System
by |

Peter C. Dibble

Submitted in Partial Fulfillment

of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

Supervised by Michael L. Scott

Department of Computer Science

University of Rochester

Rochester, New York

March 1990

Curriculum Vitae

Peter C. Dibble was born in Waterbury Connecticut early in the morning on
December 18th 1953. He went to sleep soon thereafter, setting a persistent
pattern. Not many months later he disassembled the family typewriter (which
never again typed right), and made a valiant attempt to dissect the vacuum
cleaner.

He attended Salem School, McTernan, Taft, and University of Connecticut
and earned a BS in Chemistry which went unused when he took a job at a -
computer service bureau. After a sequence of jobs in the computer field and
much part-time education, he returned to school full-time at the University of
Rochester in 1984. There he received a Masters degree in 1986 and continued
toward a PhD. His interest in parallel algorithms lead him to do research on
parallel operating system topics. His background in large computers and his im-
patience with typical I/O performance lead him to the area of this dissertation.

b

Acknowledgements

First, of course, I would like to thank my advisor, Michael Scott, for his advice
and support. Numerous times he helped me back to a fruitfull path when I was
stuck at a dead end. The other members of my committee, Bruce Arden, Robert
Fowler, and Tom LeBlanc have always been there when I needed them.

On the first day of the graduate problem seminar, Jerry Feldman told us
that a good class of graduate students would get to know one another very well.
We did, and the time I spent with my classmates gathered around a keyboard,
pizza, blackboard, or piano are among my happiest memories of the past five
years.

Liudvikas Bukys kept the Butterfly running. That was not always an easy
job. The department secretaries kept everything else operating, and that wasn’t
easy either.

Carla Ellis was my advisor when I started work on Bridge. She helped me
initiate this research and handed me off to Michael with a good start.

‘Catherine faithfully supported, criticized, and tolerated this work for years.

Reaching back into the past, Ed North and Domina Spencer taught me to
know and love science and mathematics. My family put up with the inconve-
nience of a son or brother who wanted to grow up to be a scientist, and supported
me through everything.

Jeffry K. Price at Arrow Electronics sent me stacks of information about disk
drive performance, and patiently sent it all over again several times as products
evolved. Bill Hasset at IBM’s Rochester office did similar service for IBM’s I/O
equipment.

This work was supported in part by the U.S. Army Engineering Topo-
graphic Laboratories research contract number DACA76-85-C-0001, NSF/CER
research grant number DCR-8320136, and a grant from the IBM Corporation.
Microware Systems Corporation also provided financial support.

111

Abstract

A computer system is most useful when it has well-balanced processor and
I/0 performance. Parallel architectures allow fast computers to be constructed
from unsophisticated hardware. The usefulness of these machines is severely
limited unless they are fitted with I/O subsystems that match their CPU per-
formance.

Most parallel computers have insufficient I/O performance, or use exotic
hardware to force enough I/O bandwidth through a uniprocessor file system.
This approach is only useful for small numbers of processors. Even a modestly
parallel computer cannot be served by an ordinary file system. Only a parallel
file system can scale with the processor hardware to meet the I/O demands of
a parallel computer.

This dissertation introduces the concept of a parallel interleaved file system.
This class of file system incorporates three concepts: parallelism, interleaving,
and tools. Parallelism appears as a characteristic of the file system program and
in the disk hardware. The parallel file system software and hardware allows the
file system to scale with the other components of a multiprocessor computer.
Interleaving is the rule the file system uses to distribute data among the pro-
cessors. Interleaved record distribution is the simplest and in many ways the
best algorithm for allocating records to processors. Tools are application code
that can enter the file system at a level that exposes the parallel structure of
the files. In many cases tools decrease interprocessor communication by moving
processing to the data instead of moving the data.

The thesis of this dissertation is that a parallel interleaved file system will
provide scalable high-performance I/O for a wide range of parallel architectures
while supporting a comprehensive set of conventional file system facilities. We
have confirmed our performance claims experimentally and theoretically. Our
experiments show practically linear speedup to the limits of our hardware for
file copy, file sort, and matrix transpose on an array of bits stored in a file. Our
analysis predicts the measured results and supports a claim that the file system
will easily scale to more than 128 processors with disk drives.

v

-

1 Introduction

Table of Contents

1.1 Motivation o . i e e e e e e e e
1.2 The Parallel Interleaved Approach
1.3 Related Work o
14 OVverview i i e e e e e e e e
2 Structure
2.1 The RoleofaFileSystem
2.2 PIFS Internal Structure o oo v i e
2.3 Interleaving e
2.4 The PIFS Program Interfaces
2.5 Transparency e e e e e e e o
26 Summary e e
3 Implementation ‘
3.1 BridgeontheButterfly
3.2 Performance of Primitive Operations
3.3 Implementation Experiences
34 Summary e e e e e e e e
4 Meta-Issues
4.1 Resiliency o e e
4.2 File System Maintenance
43 Portability. e
4.4 The Local File Systems,
45 DiskDrives
4.6 SUMMATY e e e e e e e e e

O N N =

14

15

16
18
20
22
25
27

28
30
39
42
43

45
45
o6
o8
60
62
64

5

Tools

5.1 The Tool Interface
52 Copy Tool e
53 Sort Tool
54 Transpose Tool
5.5 Experience withTools

Conclusion
6.1 Future Work e e e

Bibliography

vi

65
66

73
91
101

105
107

109

List of Figures

2.1 ComponentsofaPIFS 19
2.2 Sequence of Records in an Interleaved File 21
3.1 Elementary File System Block Header 32
3.2 Distribution of Read Times 41
4.1 Placement of Parity Recordsfor B=4,p=8 49
5.1 Predicted Copy Tool Performance 70
5.2 Predicted versus Measured Performance for Copy Tool 71
5.3 Merge Sort Pseudo-Code 75
54 Merge Pseudo-Code 76
5.5 Predicted Versus Actual Performance. 83
5.6 Predicted Aggregate Performance 83
5.7 Performance with Slow Communication versus Fast Communication 86.
5.8 The Effect of File Size on Performance 87
5.9 Sorttool Performance with Preliminary Optimizations 89
5.10 Sorttool Performance with Pipelined Algorithm 90
5.11 Pipelined Mergesort 91
5.12 Standard Transpose Algorithm 92
5.13 Recursive Matrix Transpose 93
5.14 Recursive Transpose Illustration 94
5.15 Transpose Tool Outline 95
5.16 Measured Transtool Performance 97
5.17 Transtool Performance 99
5.18 High-Performance Transtool Performance 101

i

viii

1.1

3.1
3.2
3.3
3.4
3.5

4.1

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

List of Tables

Potential I/O Bottlenecks 4
Performance of Comparable File Systems 30
The Full EFS Command Set 32
Bridge Server Commands 35
Low-level Chrysalis Functions 38
Performance of Primitive Operations 40
Price Performance for Assorted Disk Drives 63
Constant Values for Simple Tool Operations 69
Calculated versus Measured Copy Tool Performance for a 2G)\M File 69
Predicted Optimized Copy Tool Performance for a 20M File . . . 71
Sort Tool Performance (10 Mbyte file) 82
Constant Valu-= for Sorttool L. 84
Theoretical Merge Sort performance with Slow Communication . 85
Estimated Constants for a Tuned Sorttool 87
Sorttool Performance with Pipelined Algorithm 89
Constants for Transtool 97
Predicted vs Measured Transtool Performance. 98
Transtool Performance Extrapolated 99
Tuned Transtool Constants 100
High-Performance Transtool Extrapolated Performance 100

1 Introduction

This dissertation describes the design, implementation, and evaluation of a par-
allel interleaved file system (PIFS). The file system is designed to address the
I/0 problems of large, general-purpose, parallel computers—chiefly problems of
performance and scalability.

A uniprocessor file system is inherently not scalable. Techniques that in-
crease the performance of a uniprocessor file system may bring it into balance
with a small multiprocessor computer, but a sufficiently parallel multiprocessor
computer will require more I/O than any uniprocessor file system can provide.

A parallel interleaved file system runs as a parallel program in the same hard-
ware environment as application programs. It can therefore scale as applications
scale with the hardware parallelism. Files are interleaved across the processors
participating in the file system; this structure gives a peripheral I/O data rate
proportional to the parallelism of the file system.

A practical file system must meet some usability requirements. Most impor-
tant is compatibility with traditional file systems. Our PIFS design addresses
this requirement directly by supporting the traditional interface. The strictly
traditional file system interface has no explicit parallelism and severely limited
implicit parallelism so we enhance the file system interface with mechanisms
that express parallelism. Software devices we call tools are our primary mecha-
nism for parallel file operations. Depending on the security restrictions on tools
they can be implemented as dynamically-linked high-level operations for the file
system, or as specially-coded blocks of application code that can be co-located
with the pieces of the file system. Tools can move processor activity to the data
in the file system; for many tasks, this facility greatly reduces interprocessor
communication.

My thesis is that a parallel interleaved file system will provide scalable high-
performance I/0 for a wide range of parallel architectures while supporting a
comprehensive set of conventional file system facilities. I support this thesis
with a detailed discussion of the practicality of a parallel interleaved file system,
with a proof-of-concept implementation, and with measurements and analysis
that show excellent scalability.

1.1 Motivation

A large multi-processor computer cannot be served adequately by a conven-
tional uniprocessor file system. The speed of a large collection of processors can
completely overwhelm the processor running the file system.

Consider pattern matching. At ten instructions per byte scanned, even a
very modest microprocessor will require about 30k bytes per second of input. A
128-processor system will consume data at about 3.66 megabytes per second. A
high-performance disk can certainly deliver that data rate and the file system on
a conventional supercomputer can easily handle ten megabytes per second, but
most parallel computers do not run their file system on a supercomputer. File
systems for the high-performance microprocessors that are frequently used for
nodes in parallel computers only sustain a data rate of a few hundred kilobytes
per second [Mallett and Smith, 1989; Rinko-Gay and Varhol, 1989]. Even for
the moderately processor-intensive pattern matching operation, 128 processors
could outrun a file system by a factor of about 20.

It is easy to find problems that are dominated by I/O time even on a unipro- .
cessor. Copying a file, for instance, involves on the order of ten machine in-
structions at the application level and 2000 instructions of system overhead per
block copied. This CPU activity would take on the order of a millisecond. A
fast file system might accomplish a read and a write in about 10 milliseconds.
The 1/0 system would need a factor of 10 performance improvement and its
own processor to let such a copy program run without waiting for I/O. A mul-
tiprocessor aggravates this I/O problem by increasing the computational power
without improving I/O throughput.

Currently available parallel processor architectures couple tremendous CPU
power with ordinary uniprocessor file system performance. A solution to the I/0O
problem based on parallelism will scale better than any solution that improves
1/0 performance without using parallelism because a file system that does not
use parallelism will eventually hit some bottleneck that the parallel part of
the system does not encounter. An I/O system that uses the same parallel
technology as the rest of the system is likely to scale with the system.

1.1.1 Performance

The performance of a parallel system will improve as the number of parallel
components increases until it reaches a degree of concurrency where some com-
ponent of the system cannot benefit from further parallelism. That component
constitutes a serial bottleneck, and it limits the scalability of the system.

An activity with multiple concurrent components is almost certain to have a
bottleneck somewhere. A bottleneck is a symptom of poor performance balance,

2

and it can be treated by improving the performance of the weak component. For
instance, memory interleaving has been used to reduce the bottleneck between a
cache and main memory by increasing the parallelism of the memory component
of a computer system.

Not all performance problems are bottlenecks. A system’s worst performance
problem may be poor unsigned multiplication, but that is not a bottleneck unless
some other part of the system waits while multiplication takes place. If an
asynchronous coprocessor executes unsigned multiplications while the rest of the
processor performs other useful work, then multiplications may be a bottleneck.
If multiplications are executed in sequence with other instructions, they may be
a performance problem, but not a bottleneck.

For thirty years computers have included facilities for I/O concurrent with
other activities. I/O is, therefore, a much-studied bottleneck. A good file system
will aim to have data ready so a program can read without waiting for the disk.
Ideally, the file system would run exactly at capacity and let the processor run .
without pausing to wait for input. If the program waited for the disk, the pro-
gram would be suffering from an I/O bottleneck.! The mismatch between disk
speed and processor speed is usually accommodated with a multiprogramming -
operating system. Since other programs run while a program waits for I/O, and
many programs can have I/O in progress concurrently, the system as a whole
need not wait for I/O. Individual applications suffer an I/O bottleneck, but the
system as a whole may be in balance.

A multiprogramming operating system is designed to fully utilize the com-
puter’s resources, not to minimize the run time of individual jobs. No amount
of task switching will let a job with two hours of I/O time complete in less than
two hours, and large multiprocessors are likely to be dedicated frequently to
large jobs with lots of I/0.

As data moves from a disk drive to its destination, it passes through a number
of potential bottlenecks. The disk drive (or other storage device) is at the
beginning of the path, and it is the first potential source of an I/O bottleneck.
The data moves from the drive along a cable to a controller. The cable and
controller are possible bottlenecks. (The controller may actually be a sequence of
controllers, but consider all the controllers one bottleneck.) From the controller
the data moves through some connection into memory; the connection and the
memory constitute two more possible bottlenecks. The file system software may
operate on the data; in any case it takes note of the I/O operation. The file
system itself is therefore a potential bottleneck. Finally, the data is delivered
from the file system to the application. If that delivery involves moving the
data, the medium through which it moves is another potential bottleneck.

Tt is not usually an issue, but if the disk is not able to run constantly because the processor
cannot use the data fast enough, it is suffering from a processor bottleneck.

Table 1.1: Potential I/O Bottlenecks

Bottleneck Approaches
Processor Algorithm improvements, processor technology,
and parallelism

File System Algorithm improvements, processor technology,
and parallelism

Memory Memory technology, caching, and parallelism
Controller Hardware technology, and parallelism

Link Communication technology, and parallelism
Device Storage technology, caching, and parallelism

Device

The typical disk drive is about twice as fast now as it was ten years ago.? This
change is not nearly enough to keep pace with processor performance, which has
improved by about a factor of ten during the same interval.

Although the performance of typical disk drives has improved slowly, exotic
devices have evolved to meet the requirements of the supercomputer community.
A wide variety of very fast storage systems is available. Many of these use
parallelism in the storage device:

o Parallel transfer disks [CDC, 1986; Gamerl, 1987 read or write several disk
heads at a time. This improves the transfer rate linearly with the number
of heads used. It does not improve seek or latency times, but it does not
worsen them either. Parallel transfer disks require exotic electronics to
synchronize the data from their heads. They are expensive.

o Storage arrays [Manuel and Barney, 1986; Masters, 1987] use multiple
inexpensive disks. They usually use about eight disks and give about
eight times the data rate of a single disk. A storage array’s seek time
is only slightly worse than a single disk.® If the array uses disks whose
rotation can be synchronized, the rotational latency time is the same as
a single disk. If the disks are not synchronized it may be almost twice
the time for one disk. (Eight disks will average eight-ninths of a rotation

2Ten years ago the typical disk drive had about a 30 millisecond seek time and a two megabyte
per second transfer rate. Now it has a 15 millisecond seek time and ordinary transfer rates may
be as high as four megabytes per second.

3The seek time for a storage array is the worst seek time for any disk in the array. Since the
disks are all the same make and model, the worst seek time in the array will be very close to
the best time.

4

of latency.) A failure in a simple storage array is a failure of the entire
device. As disks are added the probability of failure increases. The RAID
project at Berkeley [Patterson et al., 1988] is addressing this issue through
redundancy.

Link

The physical connection between devices and controllers can become a bottle-
neck, but it is not a likely one. The connection is typically a group of wires. A
SCSI connection is a ribbon cable carrying eight-bit wide data, and control and
ground wires. An Ethernet connection is a single coaxial cable. An IBM channel
connection (bus and tag) is a bundle of coaxial cables. A link can be widened
by adding parallelism in the form of additional connections, or the performance
of each connection can be improved (e.g., by moving from twisted pair to coax
or fiber optics).

The bandwidth of the link will only be a bottleneck under unusual circum-
stances. If file servers are seen as devices, the network connection between the
file server and the user can easily be a bottleneck. There might also be cases
where the device is located very far from the controller. The tradeoffs that make
it easy to upgrade a six foot cable do not necessarily apply to a three-thousand
mile link; e.g., a microwave link to a device in a distant part of the country.*
This is, however, an unusual circumstance. Links are generally easy to upgrade
to any desired specifications.

Controller

A bottleneck at the controller is also often attacked with parallelism. The trans-
fer rate for a single file can be increased by striping [Salem and Garcia-Molina,
1984] the file across multiple drives and putting the drives on separate con-
trollers. A striped file system treates several disks as one logical disk. It spreads
files across the disks such that consecutive sectors are stored on consecutive disk
drives. The file system issues I/0O commands for all the striped disks concur-
rently. The disks run in parallel, and feed separate controllers. With n-way
striping, a file system can achieve data rates n times the rate of a single drive.
Striping is inexpensive and flexible, but it suffers from the performance and
reliability problems of storage arrays. It is quite common, being used by such
vendors as Cray [cray, 1988 and Pyramid [pyramid].

Striping is limited by reliability concerns, software overhead, the number of
controllers a system can accommodate, and the bandwidth between the con-
trollers and memory.

‘Extremely remote devices are not fantasy. A device called the Hyperchannel can carry an
IBM channel attachment across a satellite link.

Memory

The effective speed of memory can be increased by increasing its width and
interleaving access to the memory. This technique is often used in conjunction
with caching, but cached memory without interleaving is of limited use for 1/O
if the I/O hardware uses DMA controllers—a reasonable assumption for a high-
performance system. Programmed I/O (in which the main processor moves
data between the device controller and main memory) does not suffer from
the memory bottleneck, but only because of a more severe bottleneck in the
component of the file system that moves data from the controller to memory.

File System

A combination of the mechanisms discussed above can deliver data to the file
system as fast as the system memory can accept it. For machines in the super-
computer class, this rate may exceed 100 megabytes per second. Since processors
can usually access memory at least as fast as I/O controllers, the data rate up
to memory will roughly match the processor speed.

A minimal file system will add little overhead to I/O it supervises, but its
performance will probably be unacceptable for a high-performance computer. If
the file system uses DM A hardware, a few hundred instructions to start an oper-
ation and another few hundred to return status to the application are sufficient.
Such a minimal file system would be unlikely to become a I/O bottleneck, but
the low-overhead strategy is unlikely to deliver good throughput. It leaves no
room for I/O scheduling, data caching, or compression.®

A high performance file system will use processor power and memory to
decrease disk activity. Caching, prefetching, write behind, and data compression
accomplish this task without changing the I/O configuration. These techniques
scale with the performance of the processor, but they use enough processor
resources to make the file system software into a probable 1/O bottleneck.

File system performance only scales with processor performance for a unipro-
cessor system. When processors are added to a multiprocessor system the re-
quirement for I/O is increased and the load on shared resources is increased,
but the file system runs no faster. If the processor uses shared resources the file
system may even run a little slower than it would in isolation.

SCompression is not usually a feature of a general-purpose file system. It makes random
access difficult. Compression is, however, common in database systems, and compression is
frequently used when files are moved through telecommunication links.

6

1.1.2 Balance

Balance is the general solution for bottlenecks. The speed of the processor should
match the I/O rate, and there should be an appropriate amount of memory. Am-
dahl stated a simple rule for balanced systems [Siewiorek et al., 1982, page 46].
He calls for a megabyte of memory and a megabit per second of I/O per MIPS
of processor speed. These numbers are not the last word. Hillis [Hillis, 1985], for
instance, favors much less memory. Each application has its own requirements
for balance, but whatever the chosen ratio, more processor power calls for more

I/0 bandwidth.

For uniprocessors, more processor power supplies more I/O bandwidth. High
performance devices and striping can deliver practically unlimited data rates to
the processor, and the file system on a uniprocessor naturally keeps pace with
applications on the same hardware.

Parallel computers have no such automatic scaling. When a well-tuned file
system reaches the performance limits of a single processor only improvements
at the processor level will improve I/O performance. When a machine grows by
adding processors or improving interprocessor communication, the file system
remains fixed and balance suffers.

1.2 The Parallel Interleaved Approach

The file system bottleneck on parallel computers can be addressed elegantly with
a file system designed as a parallel program. A computer with parallelism from
the disk drive through the file system to each parallel application will suffer only
the bottlenecks imposed by the parallel architecture, such as switch and memory
contention.

Performance is not enough to justify a design for a file system. If perfor-
mance were sufficient, the best design would be no file system at all. Ad hoc
programmed access to parallel disks would have all the hardware advantages
of parallel I/O with no file system overhead. But high performance is seldom
so important that it overrides all other considerations. A practical file system
must also be judged on its usability. Unfortunately, usability is a poorly-defined
quantity. Our PIFS design supports two novel interfaces in addition to the stan-
dard file system interface. The unusual interfaces are not unequivocally usable;
any claims we make for their usability must have a subjective element. The
standard interface is, by construction, compatible with a standard file system.
This compatibility is an objective argument for the file system’s usability.

The standard interface is one of the services provided by the parallel inter-
leaved file server (PIF server). The PIF Server also administers the parallel
aspects of the file system. Together with the tools discussed below, it forms the

7

S

top layer of the file system. The lower level of the PIFS consists of a collection
of self-sufficient Local File Systems that store the pieces of parallel interleaved
files.

A parallel file system must distribute data among its constituent processors
and disk drives. We argue in section 2.3 that the best data distribution rule
for general use interleaves the data so sequential access will cycle through the
processors. This rule is simple, and it gives parallelism for sequential or random
access at least as good as any other rule.

Operating system software hides irrelevant hardware details as much as pos-
sible. Our PIFS design follows this policy in the first of its novel interfaces,
which we call parallel-open. The parallel-open interface groups a number of pro-
cesses into a job. Each read or write from the job’s lead process will transfer a
record to or from each process in the job. This interface provides true parallel
I/0 up to the capacity of the PIFS. Beyond that the PIF server provides virtual
parallelism.

Parallel-open is a convenient interface, but it entails IPC between the file |
system and the application that may not always be necessary. When enough
file system processors are involved parallel-open files will be limited, not by the
performance of the file system or the application, but by IPC bandwidth.

The possible interprocessor communication bottleneck is part of the motiva-
tion for the second novel PIFS interface which is based on the concept of tools.
The tool interface lets I/O-intensive operations move into the file system. Tools
interact with the PIF Server to learn the LFS placement of the files they will
use; then they start processes that execute on the processors running the LFSs
and communicate directly with the LFSs. Many tools will only send a small,
fixed volume of data between processors.

Tools operate at the top level of the file system (rather than above it), but
they use the PIF Server to manage parallel files. Tools never create, delete,
or open the local component of a parallel file except by passing the operation
through the server. This allows the server to protect the integrity of the PIFS.

1.2.1 Reliability

Any hardware component can fail, and a system with no redundancy and no
superfluous components will fail if any component fails. The mean time to
failure of a non-redundant parallel system decreases with its parallelism. Any
file system that looses data has a serious problem, and a parallel file system
with enough components will experience frequent component failures. The file
system must be designed to tolerate failures.

Absolutely reliable disk drives would reduce the severity of a parallel file sys-
tem’s exposure to failure. The RAID devices discussed in section 1.3.4 are very

8

nearly immune to failure. With such drives a PIFS that could detect processor
failures could provide reliable storage almost effortlessly. Though RAID devices
are likely to balance the powerful processor nodes of the future rather nicely,
software-provided reliability may be more appropriate on existing machines.

I will consider three techniques for error recovery:

o Simple redundancy
o Multi-disk parity

o Application-level recovery

Application-level recovery is not strictly a file system issue. It is appropriate
for robust data such as digitized audio and video.® Although a file system need
have no direct role in this type of error recovery, it can contribute indirectly by -
permitting I/O to bypass file system error correction services.

Simple redundancy involves writing all data to at least two disks. This type -
of data protection is common for ordinary file systems. It works well and can give
some small performance improvements for read operations, but it uses at least
twice as much disk space as non-redundant storage. In many cases reliability is
more important than the added storage cost. High-reliability computer systems
routinely use redundant disks. They are now supported even for microcomputers
[DPT, 1989].

Multiple-disk parity gives excellent reliability without much extra svtor'age
space. However, the straightforward implementation roughly doubles the time
required for write operations. Multiple-disk parity is the technique used in
RAID. :

1.3 Related Work

Parallel techniques have been applied to 1/O subsystems since the early days of
computing. Channels and I/O processors are the rule on mainframe computers
and have even been used on personal computers.” Database machines were tried
and dropped, then tried again. Software techniques such as file striping have
proven useful when high bandwidth is required for a single file. The earliest
high-speed disk-like devices were “drum” storage. Drums used several heads

6 A bad sector of audio or video data can be concealed by simply duplicating a nearby sector to
replace the damaged data. This is commonly done for CD-audio, CD-interactive, and video-disk
systems.

"Personal computers often use a SCSI controller. This controller implements some of the
function that has traditionally been considered the role of the file system.

per track to give zero seek time and reduced rotational latency. Drums have
given way to parallel transfer disks. It seems likely that parallel transfer disks

will give way to disk arrays, a less expensive technology with potential for high
I/O rates.

Other researchers have investigated parallel file systems. They have concen-
trated on comparatively limited parallelism (no more than sixteen processors),
but their work is related to our PIFS research.

1.3.1 I/O Processors

Various forms of I/O processor are the earliest form of parallel I/O, and one
that has been persistently successful since the 1950’s. IBM realized in the early
1950s that low-level I/O was imposing a significant burden on the CPU. A
“data synchronizer” for the IBM 705 allowed reading and writing to overlap
computing. IBM also developed, but evidently did not sell, the IBM 703, a
specialized tape sorting and collating machine [Bashe et al.. 1981].

Channels [IBM, 1988], I/O symbionts [cyberplus], and I/O processors by
other names became the rule for large computers. These I/O subsystems ran
in parallel with the CPU, and with considerable effort they could read several
blocks of a file into memory concurrently. Their ordinary use was (and is),
however, to improve multitasking performance [Freeman and Perry, 1977]. A
large mainframe with 32 channels, 16 controllers per channel, and 16 heads
of string® per cor:rroller can support 8192 seek operations concurrently and 32
concurrent data transfers at up to 4 megabytes per second per stream, for a
total of 128 megabytes per second. This application of parallelism is intended
to match slow disks to a high-speed processor complex.

1.3.2 Database Machines

The database field, especially the study of relational databases, has seen ex-
tensive work on parallel I/O. Database operations involve a significant amount
of I/0, but also more processor activity than ordinary file access. Database
operations often entail searching through files, assembling data from several
records, decompressing and reformatting fields, and sorting the resulting col-
lection of logical records. Parallel algorithms for relational database opera-
tions have been devised and implemented with good results [Bitton et al., 1983;
Valduriez and Gardarin, 1984].

8A head of string contains electronics for low-level disk operations. Drives are grouped in
strings, with the head of string controlling its own disk mechanism and all the other disks in
the string.

10

In 1983 Boral and DeWitt cast serious doubt on the whole concept of database
machines [Boral and DeWitt, 1983]. They declared that fast database machines
would be starved for data by slow disks. Options for faster data access such as
parallel transfer disks were too expensive. The only architecture in which Boral
and DeWitt saw any promise was one with a processor per disk.

Since 1983 paralle]l hardware has achieved some significant successes on
database problems. Gamma [DeWitt et al., 1986; DeWitt et al., 1987] comes
close to a processor per disk with 18 VAX 750’s on an 80-megabit token ring with
eight large disk drives. Gamma executes selection and update operations on the
eight 750’s with disks attached. Join, projection, and aggregate operations are
executed in parallel on the ten processors without disks.

1.3.3 File Striping

Disk striping [Salem and Garcia-Molina, 1984] is a technique that applies in-
terleaved memory ideas to disk storage. Consecutive sectors of a file are stored .
on consecutive disks in round-robin order. The only hardware required for disk
striping is extra disk controllers and whatever hardware is required to_hook
them into the computer. Reliability suffers [Garcia-Molina and Salem, 1988],
but striping usually spans a small number of disks so the effect on reliability is
not disastrous.

Since striping only improves the I/O rate through the disk drives and con-
trollers it is an alternative to disk arrays and parallel transfer disks, but it does
nothing for the bottlenecks after the disk controller. When the data rate reaches
the file system’s limit further striping is ineffective.

1.3.4 Parallel I/0O in Hardware

Parallel disks are a commercial reality. The CDC Hydra and the Fujitsu parallel-
transfer disk [Gamerl, 1987] deliver data at about 10 megabytes per second
by using five disk heads at once. Parallel transfer disks behave like ordinary
disks in terms of seek and latency time; they just transfer data much faster
(and cost much more). Storage arrays [Manuel and Barney, 1986; Masters,
1987] are comparatively inexpensive and give potentially unlimited data rates
by combining large numbers of inexpensive drives with a single controller.

The RAID (Redundant Arrays of Inexpensive Disks) project at Berkeley
[Patterson et al., 1988; Katz et al., 1988; Gibson et al., 1989] proposes disk
arrays with internal error correction and about a thousand processors. The
RAID group has found no theoretical limits on the size of storage arrays. If
they can work out the controller technology they should be able to build storage

11

arrays with mean time to data loss measured in centuries and transfer rates
measured in gigabytes per second.

RAID is complementary to our PIFS research. If progress in CPU and I/O
technology were to continue as they have, the fastest ordinary disk drives will
barely serve a single processor. Ordinary storage arrays and striping are not
useful tools because they suffer intolerable failure rates when they are used
with many drives. A RAID device can provide reliable storage and high-speed
transfer. We depend on technology such as RAID to balance the performance
of 1/0 devices with processors. If RAID devices are used in a PIFS, they can
also simplify the attainment of reliability for the file system as a whole (see
section 4.1).

1.3.5 Operations on Parallel Files

Parallel operations on databases have been a research topic for years, [Bitton
et al., 1983; Valduriez and Gardarin, 1984] but parallel algorithms for opera-
tions on sequential files are a comparatively recent development. In 1986 Sai
Choi Kwan considered parallel external sorts [Kwan, 1986]. He created and
tested parallel external sorts that achieved a factor of two speedup using four
processors, but he failed to reach the performance of available commercial sort-
ing packages—carefully tuned proprietary sort routines that make extensive use
of parallelism inherent in the 370’s channel architecture. Beck, Bitton, and
Wilkinson [Beck et al., 1988] built a carefully optimized implementation of an
external sort on an AT&T research computer. They achieved excellent perfor-
mance and speedup up to around four processors. The speedup was tailing off
at eight processors, the upper limit of their tests.

1.3.6 Parallel File Systems

The Connection Machine [TMI, 1987] is a massively parallel SIMD machine.
With up to 65,536 processors, it can outpace any conventional file system.
Thinking Machines Inc. has implemented a SIMD file system. Their Data
Vault uses 39 disk drives in what amounts to a storage array. The disks store
32-bit words with seven bits of ECC interleaved with one bit per disk. A data
vault transfers data at 40 megabytes per second, and a fully-configured Connec-
tion Machine with eight data vaults can sustain 320 megabytes per second. The
vault’s file system can interleave a file across all eight vaults, so that data rate
can applied to a single file. A disk in the vault cannot be considered in isolation
unless the semantic unit of data is a bit, but in the context of the SIMD archi-
tecture of the Connection Machine, the data vault is an appropriate application
of parallelism.

12

A parallel file system has been proposed for the Cal Tech hypercube [Flynn
and Hadimioglu, 1988; Witkowske et al., 1988]. The file system described in
these papers i1s not interleaved, but rather divides the file into p groups of con-
tiguous records and places each group under the control of a processor. The file
access model is similar to the PIFS parallel open interface except that the Cal
Tech file system supports three distinct open modes:

Single Each process that has a file open gets the same data at the same time.
If the processes write, they must all write at the same time, but only the
lead process will actually store data in the file.

Multi The file is accessible to one process at a time. When a process is done
with the file it may specify which process receives control of it next.

Independent Processes that open a file get individual access to the file. There
is no concept of a group or job. However, many processes can open a given
file concurrently.

Intel, in cooperation with the University of Virginia, has designed and imple-
mented a parallel file system that uses a loose form of interleaving [Pierce]. The
Intel concurrent file system has not been tried with more than 8 I/O processors.
Even early in the PIFS design we had at least 32 processors in mind. The differ-
ence between the Intel concurrent file system and our PIFS may be attributable
to our different scaling requirements. The Intel concurrent file system does not
allow applications to run on the I/O processors; this contrasts with the PIFS
tool concept which encourages applications to move to the I/O processor. The
Intel concurrent file system treats all the disks as one logical disk and allocates
sectors from a free list that spans all the I/O processors. This leads to a more
or less random distribution of data across processors. The PIFS placement rule
1s more restrictive and provably better for sequential access. Where our PIFS
design uses a PIF Server and tools, the Intel concurrent file system uses a “name
process” that maintains a directory of parallel files and a set of library functions
that give applications direct access to the I/O processors.

Carla Ellis supervised the early development of the PIF'S design and the first
implementation. A technical report [Ellis and Dibble, 1987] covers this initial
design work and some implementation experience. Carla Ellis continues to inves-
tigate parallel file systems at Duke University where she has studied prefetching
in a PIFS [Ellis and Kotz, 1989]. The first widely-circulated publication of PIFS
work was at the 1988 Distributed Computer Systems Conference, [Dibble et al.,
1988].

13

1.4 Overview

The remaining five chapters of this dissertation discuss the design and imple-
mentation of our PIF'S, and the experiments used to test our design. Chapter 2
defines the role of a PIFS, discusses its design, and supports the claim that it
satisfies reasonable usability requirements. Chapter 3 covers the implementation
of our experimental PIFS and argues that experiments on it can be generalized
to other implementations.

A file system operates in a complex administrative environment involving
new disk drives, protected files, backups and other file system maintenance.
Chapter 4 considers issues such as reliability, configurability, and security.

The underlying motivation for our PIFS design is high-performance 1/0 for
parallel computers, and in chapter 5 we show that our design performs well
and scales very well. Specifically, we discuss the design, implementation, and
analysis of three file system tools.

Chapter 6 concludes the dissertation with a summary of contributions and
suggestions for future work.

14

2 Structure

A parallel interleaved file system is designed to support a standard file system
interface while simultaneously offering efficient access to the underlying paral-
lelism. The internal structure of the file system software and the placement of
data on processors supports these goals.

A PIFS offers three different types of parallelismn through three different
interfaces:

o Programs for which I/0O is not a bottleneck, and programs with undemand-
ing performance goals can use the standard interface. The PIF Server may
find and use implicit parallelism through the standard interface, but the
interface includes no mechanism for expressing explicit parallelism. This
is a consequence of compatibility with non-parallel file systems. On oper-
‘ating systems that permit alternate file systems, an ordinary program can
switch between a PIFS and the default file system without modification.

o The parallel-open interface permits parallel programs to request truly par-
allel I/O to their constituent processes. The parallelism expressed at the
parallel-open interface is an abstraction of the PIFS’s underlying paral-
lelism. The amount of true parallelism and the placement of PIFS data is
not visible except as it is reflected in operation timings.

o Tools have full access to the file system’s internal parallelism. They have
potentially higher performance than any other I/O mechanism, but they
must work through an interface designed more for performance than for
convenience.

In this chapter we discuss the role of a file system and define a standard file
system interface. Later we discuss the three PIFS interfaces and their relation-
ship the the standard interface. We also discuss the internal structure of a PIFS,
and explain the choice of interleaving as a record-placement rule. Finally we will
characterize the PIFS design in terms of an effort to maximize transparency.

15

2.1 The Role of a File System

A PIFS is aimed at systems that need high 1I/O bandwidth to improve response
time for long-running programs. These include scientific applications, business
applications, and some real-time programs. We define a general-purpose file
system as one that handles these challenging applications well, but does not
inconvenience less demanding (for the file system) tasks such as program devel-
opment and text editing.

In this section we will discuss the general-purpose file system interface in
abstract terms. This general discussion is appropriate because the details of
file system operations vary widely, and for most programs the details will be
hidden under an I/O library. The elements common to most file systems used
on general-purpose computers are:

e A file is a named array of data.

o The basic I/O operations are read and write. A standard file system also
supplies creatc and delete operations that create and destroy files.

® Read and write are usually kept as simple as possible to improve their
performance. Each read and write can include a file name and file position,
but those data are seldom needed and moving them to open, close and seek
operations optimizes the common case.

Though the create, delete, read, write, seek interface is the common mini-
mum, it is frequently extended with keyed random access, database operations,
and security. Keyed access and database operations are generally associated
with read and write, while security is usually bound to file naming.

The standard file system interface makes few assumptions about the under-
lying hardware. The basic assumptions are:

e Stored data is permanent.
e By some measure, there is a large volume of storage.
e Random access is possible, but may be slower than sequential access.

o The storage is subject to failure, but failure is infrequent.

Random access is only required for certain types of files. Files on tape drives have
slow random access with limitations on updates. If terminals, printers, networks,
and so forth are treated as files, the file system will support access modes that
permit no random access. With the exception of file system characteristics that

16

depend on the above assumptions, the software attempts to conceal the details
of the I/O hardware.

A file system interfaces with physical I/O devices. It will typically conceal
every novel attribute of the physical device for at least three reasons:

1. If the file system provides any security for stored data, it must monitor all
access to the storage devices. This is much easier if all access is through
simple read, write, create, and delete operations.

2. By hiding the hardware, the file system makes programs independent of
the actual I/O devices.

3. I/O hardware is often difficult to use. The control protocols are complex
and must be followed carefully. The file system hides these details for
the convenience of application programs, and because incorrect use of the
hardware could have unfortunate results—up to and including reformat-
ting a disk or incinerating a peripheral.

Given the clear evidence that the total storage requirement for computer
systems is large and growing, one might expect evidence showing that files
are large. Most studies show that files are small and short-lived [Floyd, 1986;
Ousterhout et al., 1985; Floyd, 1989; McKusick et al., 1984; Satyanarayanan,
1981], but I assert that the studies reflect peculiarities of Unix. Unix files are
used for inter-process communication and storage of small amounts of data that
do not need a file system’s permanence or capacity. The files maintained by the
rwho daemon and the lock files used by the hack game could probably be better
implemented outside the file system. A large number of Unix file operations are
on such files [Floyd, 1989].

In the fall of 1984 I analyzed a month’s SMF,! accounting, and database-
tuning data from the University of Rochester’s general-purpose IBM mainframe.
The load included database work, administrative processing for the University
and several local businesses, student program development, statistical analysis,
text formatting, and extensive interactive work. The interactive use accounted
for more than half the CPU time through the working day, and almost no re-
sources at night. I measured total elapsed time in I/O as a function of file size,
and discovered that the programs that were most I/O bound were accessing
large sequential files. Time spent accessing small files was trivial. I argue with-
out proof that if the load I measured was idiosyncratic, it was biased toward
small files by the large number of students and other small-scale users found

1SMF is an IBM acronym for System Management Facility. It can be used to capture data
about system activity in considerable detail. I used the file-by-file I/O counts and estimated
I/O time in job-step accounting for my analysis. '

17

at a University. I also assert that my measurements are more representative
of general-purpose load than the measurements of Unix systems. My interest
in high-performance computers and programs that are I/0-bound supports my
choice of a mainframe load for measurement.

Comments in comp.arch on Usenet show that sequential I/O on very large
files is important to the community that does scientific computing. Animated
graphics is a particularly clear example. Assuming no compression, a 4096 x 4096
display of 24-bit color uses 48 megabytes per screen. Ten frames per second
would not give smooth animation, but it would still require close to half a
gigabyte per second. A fifteen second clip of such jerky animation would require
a seven gigabyte file.

2.2 PIFS Internal Structure

A PIFS has two layers and an unlimited number of components. The top layer
contains a parallel interleaved file server (PIF Server) and a set of tools. The
bottom layer is an array of Local File Systems (LFS’s). Figure 2.1 shows the
interfaces between the components. Simple applications will interact only with
the PIF Server, while more sophisticated applications may also invoke tools.
For the highest performance, a sophisticated application may become a tool and
gain access to the LFSs.

The standard interface and the parallel-open interface connect application
programs with the PIF server, and only the PIF Server is visible to ordinary
application-level programs. The PIF server communicates with application pro-
grams and with the other components of the file system: LFS’s and tools. Tools
communicate with LFS’s and the PIF server. LFS’s communicate with tools
and the PIF server.

2.2.1 The PIF Server

The PIF Server defines and maintains the structure of parallel interleaved files,
and repackages the parallelism provided by the LFS’s into virtual parallelisin
that meets applications’ requirements. All PIFS file operations originating from
applications (not tools) are sent to the PIF Server. Tools can communicate
directly with LFSs, but they must use the PIF Server to open, close, create, and
delete PIFS files.

The PIF Server keeps handles that address each LF'S. The server uses these
handles to communicate with the LFSs, and it passes the handles to tools. The
PIF Server also handles PIFS-level data for each open file. When a file is opened,
the PIF Server locates the file in the PIFS directory. The PIFS directory entry

-
13

Figure 2.1: Components of a PIFS

Tool
Bridge Server 1 Tool
2
Tool
3
LFS LFS LFS

includes identifiers for the LFSs participating in the file, and the LFS-level name
of the file on each of those LFSs. The PIF Server uses that information to send
an open request to each participant LFS, and retains the information for use in
subsequent file operations.

For create and delete operations, the server will create or delete the PIFS
file, issuing commands to the LFSs as necessary, and maintaining the PIFS
directory to reflect the change. It also uses the PIFS directory entry with the an
understanding of interleaving to direct reads, writes, and seeks to the appropriate
LFSs. The algorithm for routing requests to LFSs is given below:

The number of LF'Ss for the file is found in the file’s directory entry.

The LFS number for the particular record is calculated using the
PIFS placement rule (see section 2.3).

The file name for that component of the PIFS file is found in the
directory entry.

The LFS handle for the component is found in the PIF Server’s list
of LFS handles.

The address in the operation is revised according to the PIFS place-
ment rule.

The operation is dispatched to the LF'S.

If a read or write spans several records, the PIF' Server must dispatch
several LF'S operations to cover the I/O. It can dispatch them to
run concurrently, but it must catch the returns from the LFSs and
combine them into one response to the calling application.

19

2.2.2 The Local File System

Local file systems are complete, self-sufficient file systems. The PIF'S relies on
them to implement every feature of the file system that doesn’t in some way
involve parallelism.

At a minimum, a LFS must implement all the operations and concepts ex-
pected from a general-purpose file system: read, write, file creation, current
position, end of file, and (optionally) file deletion.

If the PIFS is to support file security, it must be implemented at the LFS
level. This is required because of tool-level access to LFSs (see section 4.4.2).

Support for logical records is not strictly required of the LF'S, but it increases
the utility of the PIFS greatly. Without support for logical records, the only
semantically meaningful unit of data at the PIFS level is a byte. Since disks do
not read or write single bytes, tools must use a larger grain, the physical record
‘or sector. A tool can conveniently perform an operation on the first p 4 kilobyte
(for instance) physical records of a file in parallel. If the data comes in units that
do not pack neatly into 4k records, the tool must deal with single units of data
that cross processors. With logical record support, a tool can easily process. the . -
first p meaningful units of data in parallel.

2.2.3 Tools and LFS

Tools communicate directly with LFSs. They may open, read, write, and seek.
They may even create and delete files that aren’t part of the PIFS. A tool uses
the same PIF Server interface as ordinary applications; it must use this interface
to open, close, create, and delete PIFS files, but it may also use any other PIF
Server operation. For access to LFSs, tools use the same interface as the PIF
Server. Access to an LFS by tools, or even ordinary programs, is not a security
exposure because the LFS implements all the file system security.

2.3 Interleaving

A PIFS must distribute data among its LF'Ss. The placement rule that governs
this distribution must distribute data evenly and predictably; it must be a re-
versible function, and it should be easy to calculate. We chose to use straightfor-
ward interleaving. The algorithm is simple and reversible, it is the best strategy
-for sequential access of all types, and it is as good as any other strategy for
random access.

The equations for the location of a record in an interleaved file are the same
as the equations that locate records in a two-dimensional array. For a file in-
terleaved across processors numbered from 0 to p — 1, record n will be found

20

Figure 2.2: Sequence of Records in an Interleaved File

\E"‘"‘E""E"""JZ""‘J:"'"E"""l""‘"‘l:"""l:""L

[[) [[1 1 1 1 D
CL____L-___L_..__L_..__L__..-L___..L_---L__--l._-__l

T LS L] L4 L4 L4 7 ¥ Ll T

1 1 }) ! 1) 1 | |>
(I’""E""‘E""'r‘"'I""‘I:"'r'""j""'r_‘“"l

1 [[| |] 1 1 1 t)
L R e e e

L L4 T T L | ¥ ¥ L] L)

1 | | 1 | ' 1 | | |)
(I"""E""E“"E"“’E""'E"""I’""'E"""L""L

1 1 ' 1 t | 1]] I)
(L____L____L____L___-L___-L__--L.-_.._L.._--L__--n

L L ¥ L4 L] Ll ¥ T L L)

1 1 1 1 i 1 1 [1 |)
Cr"‘-‘r“'“l:"“t"'"'r""‘r""J:""'r"“E""'L

L___-L-__-L___-L____.___--L----L----L----L----I\

LFS1 LFS2 LFS3 LFS4 LFS5 LFS6 LFS7 LFS8 LFS9

on processor n mod p. On that processor record n will be found in the local *
component of the file at record number |n/p|. The set of processors for a file is

a subset of the processors participating in the file system. The description of a
parallel interleaved file includes a list of the processors for the file.

The record placement rule has four important properties:

1. The rule is a reversible function. This lets a tool compute a record’s
position in a file from its local position.

2. -Record placement can be calculated efficiently, usually with only two ma-
chine instructions.

3. For a p-processor file system, p consecutive records will always be on p
different processors.

4. For random access, the rule is a good hash function. Any placement strat-
egy that put the same number of records on every node with a small
constant overhead would be satisfactory.

The rule that specifies the placement of data is not subject to change by
any component of the system. It could be implemented as a library function or
provided as an abstraction in the PIF server.

Other placement rules may require large maps or even I/O operations to
locate a record. Hashing algorithms that work on the record number are in
the same class as the PIFS interleaving rule (though these calculations usually
cannot be reversed). For truly random placement or any other system that
cannot be recalculated, the file system would require some form of index; for
example, a in-memory map, an index stored on disk, or a linked list file structure.

21

e

Appends never cause movement in an interleaved file. Other structures can
require reorganization of the entire file for each record appended. The placement
rule used in [Witkowske et al., 1988] partitions the file into p equal-size groups
of consecutive records. Under that rule every pth append will require that the
first record on each processor (except the first) become the last record on the
previous processor.

The PIFS placement rule seems to conflict with allocation strategies such
as that of the Gamma database [DeWitt et al., 1986] which positions records
according to key values such that each processor serves a known range of keys.
However, a database at the tool level could position records in a file to get any
required distribution. From a tool’s point of view a file is a two-dimensional array
of records. It can write a record into any position in the array. If the desired
placement rule is disk = H,(k) and record = H(k), the tool can calculate the
record number in the PIFS file as n = H,(k)p + Hy(k), then use the standard
PIFS placement rule to position the record at (disk, record).

2.4 The PIFS Program Interfaces

2.4.1 Standard Interface

Like a conventional file system, a PIFS must implement the following facilities.

Read transfers one or more records from a speciﬁed file to program memory.
Write transfers one or more records from program memory to the specified file.

Delete removes a file name from the file system’s name space and returns any
resources allocated to the file.

Current Position is a handle that identifies the next record to be read or
written. The current position is updated by the file system after every
read or write. It can also be set through the program interface. This is
usually done with a seek or find command.

End of File is asserted by the file system when the program attempts to read
data that falls beyond the end of the file.

Parallelism in itself does not constitute a compelling reason for a file system to
depart from the standard interface, but efficiency can, and usually does, motivate
additions to the interface.

The minimum program interface places a heavy semantic load on read and
write. Both commands must identify the file by its permanent name, check the

22

program’s access authority, set the current position in the file, and transfer data.
The write command may also create or extend the file as required. Additional
commands in the file system interface can simplify reed and write and give the
file system some useful hints. We therefore include them in our PIFS. The
principle here is that heavily-used operations should be stripped for speed.

Create Adds a file name to the file system’s name space. It may also allocate
space, but this is not fixed by the design of the parallel file system.

Open gives the file system a chance to check file protection attributes. It also
warns the file system to expect 1/O on the named file.

Seek is included because non-sequential access is an exceptional case.

The read, write, and seek operations and current position are defined in terms
of records, more specifically logical records. This is typical of general-purpose file
systems. A logical record is a unit of data defined at the program level. The file -
system’s application interface is defined in terms of these logical records:

o Offsets within a file are specified in terms of logical records.
o The size of a read or write request is expressed in terms of logical records.

¢ Interleaving is performed on the basis of logical records.

Logical record file structure is convenient for the program—it can address data
in semantically-meaningful units. Logical records are also a powerful hint for the
file system which can assume that I/O requests will involve logical records. For
instance, a file system can expend effort to prevent logical records from spanning
sector boundaries with a reasonable expectation that the effort will pay off when
the record is read. '

Unix-like file systems reduce the concept of the logical record to triviality.
Such file systems support only one logical record size: a byte. This is a signifi-
cant simplifying assumption for the file system implementor and for character-
oriented applications, but it adds complexity and cost to the more sophisticated
applications found in commercial and scientific environments.

A single processor program on a multi-processor system is not the main target
for the PIFS design, but the file system can find and capitalize on parallelism
in the standard interface. Parallelism can be found in ordinary read and write
requests for more than one record. A read or write for p consecutive records
can be dispatched to p LFSs concurrently giving an O(p) speedup provided that
IPC to the single originating processor does not form a bottleneck for the the
operation. A PIFS’s treatment of implicit parallelism is similar to the low-
level parallelism of file striping [Salem and Garcia-Molina, 1986]. Disk striping

23

reads sets of consecutive records in parallel at the drive and controller level,
then serializes at the file system; a PIFS reads the same records in parallel, but
carries the parallelism through the file system.

2.4.2 Parallel Open

The PIFS parallel-open interface lets the file system transfer data to a set of
processes concurrently. This contrasts with the standard interface which can
transfer data from all the LFSs in parallel, but only implements one destination
per I/O operation. Concretely: given enough LFSs, an ordinary read of 5 records
would execute the 5 reads in parallel, but the data would all go to the process
that requested the read. A read on a parallel-open file could transfer those five
records to five separate processes.

The parallel-open interface is so named because the interface is selected and
defined at open time. The parallel-open request includes a list of I/O handles
in addition to the usual file identification information. The nature of the 1I/O
handles depends on the hardware and operating system software, but they iden-
tify paths through which the file system can communicate with processes. The
handles might, for instance, be memory addresses or message queue IDs. The
processes identified by the handles constitute a job, and the prc +ss that issued
the parallel-open becomes the job’s controller.

The parallel file system in parallel-open mode acts somewhat like a SIMD
machine. When the controlling process asks to read a record, the file system
delivers consecutive records to the handles designated when the file was opened.
When the controlling process issues a write request, records are transferred
from all the handles into the file system. The expected use of parallel open has
one handle per process and one process per processor, but the location of the
components of the job is not dictated by the parallel-open interface. All the
handles could even reside on a single processor (though the memory on that
processor might constrain the performance of the file system).

The file system implements no synchronization for the processes in a job.
This is left to the job’s controller. The rationale for this decision is that the
job is capable of synchronizing itself and has more information about its syn-
chronization requirements than the file system does. Consider an application
for which data consumption is predictable at approximately 100 milliseconds
per record. Depending on the contents of the records in the file and the nature
of the handles, the controller for such an application could issue one read per
100 milliseconds without detailed synchronization. The only synchronization
protocol would involve preemptive flow control from a process that was running
far enough behind that it was exposed to a buffer overflow. Many tasks have
approximately predictable record-processing time, and while they would run

24

correctly with PIFS synchronization, they will run correctly and more quickly
with internal synchronization.

The parallel-open interface hides the actual structure of the parallel file.
The application does not even know the degree of parallelism provided by the
file system. If an application requests more parallelism than the file system
can offer, the file system sequentializes as required. Except for its influence on
performance, an application using the parallel-open interface cannot determine
the number of processors involved in the file system. Transfers through the
parallel-open interface act on sets of consecutive records. For an n-way parallel
open, if process z receives record r from one read, it will receive record r + n
from the next read.

The action of the PIF Server for a parallel-open file is closely related to its
action for multi-record I/O. A single read or write request from the job’s con-
troller is translated to many requests by the PIF Server. The server dispatches
enough LFS requests to satisfy the parallel read or write (as established in the
parallel open). It waits for the LFS operations to complete and arranges for
data to move between the processes in the job and the LFSs. When all the I/O
for the request is done, the PIF Server responds to the initial request.

2.4.3 Tools

Parallel-open files use the parallelism in the file system but they cause unneces-
sary interprocessor communication. For example, a character-counting applica-
tion would move the entire file between processors when it would actually suffice
to exchange only two small messages with each processor controlling a disk if
local counts were computed on those processors.

Interprocessor communication is often an important bottleneck for parallel
systems. A mechanism for keeping I/O out of the interprocessor communication
medium is therefore important.

The tool interface lets an application become a peer of the PIF Server. The
application can move to the data such that a process of the application runs on
each processor servicing the file. At this level, programs must know the internal
structure of parallel files, but they can process the file with a minimum amount
of interprocess communication. Tools are discussed in detail in chapter 5.

2.5 Transparency

In the interest of maximizing performance we kept the PIFS design as trans-
parent as possible. Arguments for transparency such as [Parnas and Siewiorek,

25

-

1975; Snyder, 1986] and Lampson’s summary paper on operating system de-
sign [Lampson, 1983] make it clear that the power of the underlying parallelism
should be available outside the file system. Correctly implemented transparency
gives the programmer opportunities for optimization that might be hidden in a
less transparent system. However, Parnas emphasizes that a good design delivers
usable power, not needless complexity, and Snyder points out that the interface
should leave the programmer with an accurate picture of the relative costs of
various operations. The arguments for transparency seem obvious almost to the
point of triteness. They are not. Transparency runs counter to many other OS
design goals: abstraction, security, protection, concealment of hardware details.
The PIFS design strongly emphasizes transparency.

It would be unreasonable to allow completely transparent access to the hard-
ware underlying a PIFS. The resulting interface would be restricted to particular
‘hardware and would probably perform poorly. A file system with such trans-
parency would only be completely defined if it included the specifications for the
underlying hardware. This is generally bad style for operating system software.
Protection of the file system’s integrity under rigorous transparency would re-
quire an audit of each I/O request. The overhead of these audits on the low-level
requests might cause them to perform more poorly than similar, seemingly less
transparent, operations. If processes have access to I/O hardware, optimization
of I/O for the system as a whole is severely hampered. Techniques such as track
buffering and head scheduling are only useful when I/O devices are controlled
by a single entity (such as the file system).

Transparency at the device driver level would make the interface largely
hardware independent, but it would not solve the protection problem. The file
system would have to check the disk address for each read or write operation to
ensure that it was to a sector accessible to the calling program.

Restricted transparency at the LFS level is granted by the PIFS tool inter-
face. The difficulties cited above are considerably weakened at this level. Tools
are hardware dependent only to the extent that they must adjust to the number
of processors in the file system. Since the LFS is a competent file system, its
operations are secure within the LFS context. Tools have unlimited access to
LF'S operations, but PIFS files are not maintained by the LFSs. To protect the
integrity of the parallel file system, tools are required to create and delete PIFS
files through the PIF Server. A correct tool will not create incorrectly formed
PIFS files, and an incorrect tool can only damage the PIF'S files it is permitted
to write. Files damaged by incorrect tools will not behave correctly when they
are accessed though the more abstract interfaces, but they remain accessible to
tools and are perfectly accessible to PIFS-level deletion.

The standard interface duplicates the LFS interface except that every op-
eration that might reveal the underlying parallelism is removed. For instance,

26

the PIFS standard interface does not support any command that would return
an absolute disk address or disk IDs. These data could be deceptive or expose
the underlying parallelism; for instance, a PIFS file has p different disk IDs
depending on the current record.

Some applications may not want to use the non-parallel standard interface,
but may still be unwilling to tackle the complexity of a tool. The parallel-open
interface is a compromise designed for such programs. The virtual parallelism of
the parallel-open interface gives these programs explicitly parallel I/O without
exposing them to the LFS-level structure of the PIFS.

2.6 Summary

Each of the three PIFS interfaces contributes to the system design goals. The
standard interface addresses the ease of use goal, but its performance is not much .
better than simple striping would provide. The parallel open interface extends
the standard interface to include explicit virtual parallelism. It gives programs
access to the full parallelism of the file system without giving them access to-
the underlying file structure. The tool interface supports high performance by
permitting explicitly parallel optimized file system operations, and by promoting
local communication with the LFSs (instead of forcing tools to communicate
with the file system across processor boundaries).

No single placement rule is better than the interleaving record placement
rule for sequential access or for random access. Ad hoc placement rules can
outperform interleaving for some database operations, but a database tool can
make provisions that superimpose the optimized rule on the standard placement
rule. The placement rule always allows the maximum poss1b1e parallelism for
standard and parallel-open access.

27

3 Implementation

Performance and scalability are among our fundamental goals for parallel in-
terleaved file systems, and we claim that we have achieved these goals. This
claim is supported by abstract analysis and by measurement. This chapter de-
scribes the implementation used for the measurements, and supports the claim
that the measurements are meaningful. The prototype PIFS, Bridge, was im-
plemented on a 120-processor BBN Butterfly [BBN, 1986] under the Chrysalis
[BBN, 1987] operating system. It meets the stated performance goals for the

standard interface and tool interface. ‘

Bridge is an experimental file system. It clearly validates the basic PIFS
design, but its absolute performance does not always compete with commercial
file systems. We expended some effort on tuning, but we rely on measurements
and extrapolation to project our measurements onto highly-tuned file systems.
For sequential I/O, Bridge compares well even with file systems on more capable
processors (see table 3.1). To the extent that our experiments are dominated by
these operations, our measurements need no adjustment.

" Aspects of our Bridge implementation were dictated by hardware constraints:

o Disk drives are simulated in main memory by code that imitates the per-
formance of CDC Wren IV drives [CDC 88, 1988|.

o Our experiments used at least 60 megabytes of RAM disk space; this
consumed all the available memory on about 70 processors. The file system
software and experiments were constrained to the remaining processors.
This shortage of processors limited Bridge to 32-way parallelism. This is
an unfortunate restriction since our analysis shows that over 100 processors
would be useful.

Implementation of Bridge started in 1985 [Ellis and Dibble, 1987] under the
supervision of Carla Ellis. The first version was functional, but remarkably
slow—a write took over 150 milliseconds. Poor performance notwithstanding,
the early version of Bridge demonstrated that the parallel interleaved file concept
had some validity.

29

Table 3.1: Performance of Comparable File Systems

System Read Write
Xenix (33 mhz 80386, 18 ms drive) 55 k/sec 55 k/sec
Bridge (8 mhz 68000, 16 ms drive) 100 k/sec 30 k/sec
0S/2 (33 mhz 80386, 17 ms drive) 100 k/sec 55 k/sec
Mac II (with 19 ms drive) 170 k/sec 50 k/sec
Unix (Sun 3/80 with 16.5 ms drive) 1700 k/sec 730 k/scc

The non-Bridge figures in this table were taken from [Rinko-Gay and Varhol,
1989; Mallett and Smith, 1989].

Work on Bridge continued under the supervision of Michael Scott. Con-
siderable effort, mostly improvements at the EFS level, yielded a factor of five
improvement in performance. The performance of read and write improves
slightly as processors are added. Open and close are independent of the number
of processors. File creation becomes slightly slower as processors are added. File

deletion improves linearly with the number of processors, but this is an artifact
of the O(n) file deletion algorithm used by the LFS.

3.1 Bridge on the Butterfly

We implemented ~ ‘e on a 120-processor BBN Butterfly [BBN, 1986] running
the Chrysalis o, g system [BBN, 1987]. Each node in a Butterfly has
a megabyte of n. ry, an 8 mHz 68000, and a microcoded processor that

implements fast inicinrocessor communications.

3.1.1 Elementary File System

The LFS used in the Bridge implementation is the Elementary File System (EF'S)
[Thomas and Toner, 1984; Schantz, 1984] which BBN designed for the Cronus
distributed operating system [Gurwitz et al., 1986]. EFS features stable storage
and stateless access, but it is slow and it is about as far from the standard file
system interface as any “real” file system. It is an unusual choice as the LFS
for a high-performance file system, but its simplicity made it easy to port to the
Butterfly, and the sources were available.

The Elementary File System has a number of peculiarities:

» It is stateless. It has neither an open nor a close operation.

» The blocks in a file are stored in a doubly-linked circular list. The pointers
are disk addresses supplemented with a disk ID.

30

¢ Random access is accomplished either through an index linked to the first
block in a file, or by reading sequentially through the file from a known
point (beginning, end, or current location) to the desired block.

o There is no support for logical records.

e The name space is flat. Moreover, file names are integers assigned by the
file system.

e Unusual operations such as “copy file” and “make permanent” are pro-
vided.

The extra file management operations supported by EFS can be, and are, ignored
by the Bridge Server.

The statelessness of EFS contributes to its uneven performance. Sequential
read/write operations return the disk address of the probable next block as a
hint for the next operation. With the hint, a sequential read will hit the next
block on its first read. Without the hint, the read may traverse the links in the
file from the beginning or the end until it reaches the desired block.

We did not want to require application programs to maintain hints for each
open file, so we called on the Bridge Server to provide hints. By providing hints
for the EFSs, the Bridge Server makes PIFS file operations not stateless even
though they are based on stateless EFS file system operations. Since tool I/O
does not pass through the Bridge Server, tools must supply hints to EFS. If the
tool fails to preserve each file’s state, in the form of a hint for the next operation,
performance degrades markedly.

The Bridge server requires an open command to set up a context for subse-
quent file operations on a file. The file’s context is associated with the file name
and updated by the Bridge server after each read or write operation.

Blocks of data delivered to application programs are images of disk sectors.
The disk driver level of EFS uses 1024-byte sectors. Each sector contains 24
bytes of EFS overhead (see figure 3.1), sixteen bytes of Bridge overhead and 984
bytes of user data. The pointers in the 24-byte EFS header lead to blocks that
are interpreted as adjacent within the local context. In other words, the block
pointed to by the nezt pointer is p blocks away in the Bridge file. Bridge claims
16 bytes of each block, and previous versions of Bridge have used that area for
links analogous to the EFS links. The current version of Bridge only uses its
reserved space in each block for internal consistency checks such as checking to
make certain that each block read is the requested block in the correct file.

EFS has no concept of a logical record, only the notion of a 984-byte block.
When we could, we designed our experiments around a 984-byte record length.
When we required another record length, we implemented logical record support
in the calling program.

31

Figure 3.1: Elementary File System Block Header

Bytes Description
4 FileID number for this file
Block number in file for this block
Disk address of next block
Disk address of previous block
Disk address of last block
File type (short/long)
reserved

LW W

Table 3.2: The Full EFS Command Set

Create file Initialize a new file and returns its name
Delete file Free the storage and the name of a file
Sequential read | Read a record using links

Sequential write | Write a record using links

Random read Read a record using the index block . -
Random write Write a record using the index block
Make permanent | Mark a file “permanent”

Copy file Create a copy of a file

Considered in context, the unusual EFS file structure is not poor design.
EFS was constructed as part of a reliable distributed system. Each disk block
includes enough information to allow a disk with a damaged directory to be
reconstructed from a scan of the sectors on the disk.

EFS has been modified to fit into Bridge, but most of the modifications have
involved adding instrumentation, improving performance, or adapting to the
Butterfly and Chrysalis. The original version of EFS expected service requests
in the form of function calls. The Bridge version accepts requests passed through
the Chrysalis “dual queue” message system.

The revised version of EF'S can still be used by a program that knows nothing
about Bridge. In particular, the portion of a Bridge file controlled by one EFS
server can be viewed locally as a complete file. The EFS server can ignore the
fact that it holds every pth block of a more global abstraction. Even within
the context of a PIFS the instances of EFS are self-sufficient and operate in
ignorance of one another.

The EFS Primitive Operations

EFS as distributed for Cronus supports the operations listed in table 3.2. The
command set of the version used with Bridge is somewhat different. Files are

32

made permanent when they are created. We never use ordinary EFS random
reads and writes because they have extremely unstable performance; instead we
use sequential access and let EFS hunt through the linked file for the target block.
The built-in copy operation performs much better than a high-level stream of
reads and writes, but the operation is not supported by common file systems,
and its use would have cast doubt on the validity of a copy tool. The copy
operation still exists, but it is not used nor is it supported at the Bridge Server
level.

Files are linked lists of blocks, but EFS does not use a free list structure
to organize free space on a disk. EFS maintains free space as a bit map. This
structure is justified by disk recovery considerations, but the combination of
linked list files with bit map allocation is not good for performance. File deletion
involves stepping down the linked list of a file marking each record free in the
allocation map. The original code for file deletion took pains to keep the disk
in a recoverable state. Removing those measures improved performance, but
deletion is still O(n) (where n is the size of the EFS file). '

Sequential Read/Write Optimization

In EFS terms the I/O operations used by Bridge are all “sequential” even if
they access the file randomly. If access is actually sequential, the Bridge Server
will provide correct hints, and I/O operations will run in roughly constant time.
When EF'S receives an incorrect hint or a request for a non consecutive record,
it must search for the requested record.

EFS file blocks are doubly linked. As originally implemented, EFS finds a
requested record by checking at the hint then searching from the beginning of
the file if the hint is incorrect. The Bridge implementation of EFS improves
on the search algorithm by a large constant factor. Sequential read and write
operations locate their target record by following links forward or backwards
from the closest known point in the file: beginning, end, or hint location. If
the block addressed by the hint contained the requested record for a read or
either the requested record or the preceding record for a write, EFS will skip
the search.

EFS Caches

EFS itself maintains one cache, an LRU write-through cache of disk blocks.
This cache almost always contains the base sectors (the usual initial block in a
circular doubly-linked list) of all the open files, and the blocks that contain the
file system’s global data such as the allocation bit map. The EFS cache improves
EF'S’s performance by about a factor of ten over EFS performance without the
cache.

33

The disk simulation includes a track buffer. The simulator only charges a
full disk access delay on the first access to a track. Until the head moves to
another track, accesses are only charged for SCSI transfer time. Without the
EFS cache, the track buffer would be useless. EFS would move the head to
the root of the file and to the global data structures for every read; since these
are on two or three different tracks, every low-level read would cost a seek. In
conjunction with careful file allocation, the track buffer reduces disk I/O time to
an average of about 3 milliseconds per read. Figure 3.2 shows that the majority
of read operations take no more than five milliseconds. This suggests that most
reads involve no more than one low-level read. The longer read times result from
overhead operations and EFS cache misses.

3.1.2 Bridge Server

In our implementation of Bridge the Bridge Server is a single centralized process,
though this need not be the case. If requests to the server were frequent enough
to cause a bottleneck, the same functionality could be provided by a distributed
collection of processes. Our work so far has focused mainly upon the tool-based
use of Bridge, in which case access to the central server occurs only when parallel
interleaved files are created, opened, or deleted.

The Bridge Server has four functions:

1. It maintains the Bridge directory.

2. It implements the standard and parallel-open interfaces.
3. It makes EFS handles available to tools.

4. Like the rest of the Bridge system it is extensively instrumented for con-
sistency checking and performance monitoring. '

Server Operation

In support of the functions listed above, the Bridge Server monitors and op-
timizes the operations that pass through it. The Bridge Server is driven by
messages from applications and LFSs. Its main control structure handles these
messages. The following pseudocode contains a few representative fragments of
this control structure:

pos 18 the current record
Receive Msg
switch(Msg.Op)

34

Table 3.3: Bridge Server Commands

Command Arguments Returns
Create File File id
Delete File File id
Open File id LFS file ids
Sequential Read [File id Data
Random Read File id, Block number Data

Sequential Write | File id, Data

Random Write | File id, Block number, Data
Parallel Open File id, Worker list

Get Info LFS handles

case Read
if the file is parallel open
for i = 0 to parallel-open parallelism
calculate EFS handle and record number for the record pos + 2
get a hint for the record from the hint cache
send read message as calculated
while a read is outstanding
wait for a return from an EFS
n = the job member corresponding to the read
route the message to the process[n]
update the hint cache
update pos
else not open for parallel access _
calculate EFS handle and record number for the record pos
hold the record number in the message
insert the calculated record number in the message
set the EFS hint in the message from the hint cache
forward the read message to the calculated EFS
wait for the response from the EFS
update the hint cache
replace the held record number in the message
forward the message to the calling application
update pos
case Write
Write is stmilar to read
case ParallelOpen or Open
allocate an FD
update file name in FD
read the Bridge directory entry for this file

35

copy the EFS number list and file name list
from the directory entry into the FD
if this is a parallel open
copy the parallel-open handle list and handle list size into the FD
if the caller provided an information buffer
Copy the EFS number list and file name list into
the information buffer
case GetInfo Called by tools
build a return message containing EFS Handles and EFS Processors
send the message to the caller
case Create
for each EFS
Send a “create file” message
allocate an FD
for each EFS
wait for completion
store the file name in the FD
create a Bridge directory entry
free the FD
send a “completed” message to the caller

A file descriptor stores information related to an open file. Since file de-
scriptors are identified by the associated file name (not by path number or other
abstract handle), a file descriptor amounts to a somewhat augmented RAM copy
of the Bridge directory entry. The file descriptor for a parallel-open file includes:

e A list of the EFS numbers for EFSs participating in this file;

A list of the EFS names for the local components of the file;

A hint for each EFS;

The current position in the file.

A list of handles for members of the parallel-open job. The first entry in
the list is the job’s controller.

Since all the lists are stored in static arrays, each list is accompanied by a field
giving the list’s length FDs for files opened with an ordinary open operation
have no value in the list of handles for job members.

Our implementation of the hint cache contains a hint for each active file/EFS
pair. An inquiry against the hint cache always returns a value. If there are no
cache entries for the EFS/File combination the hint cache will return a special

36

“unknown” code; otherwise the cache will return the one value it contains for
that EFS file. Each hint specifies the location of the most recently accessed
record of the file, on that EFS.

The Bridge Directory

The Bridge Server maintains the Bridge Directory, which is a standard Bridge file
except that it is only accessible through the Bridge file-maintenance operations:
create, open, and delete. The Bridge directory contains the Bridge names of
files and a list of the LFS files that make up each Bridge file. An LFS file is
identified by the processor ID of the processor that runs the LFS and the LFS’s
internal file name.

All the Bridge files with which we experimented spanned all the LFSs and
used the same name for all their LF'S components. We thus did not fully use the
power of the Bridge directory. Much of the information in the Bridge directory
is intended for use in an administered system. The directory supports different
sets of processors for each Bridge file, and LFS’s arranged in different orders.
It also permits the LFSs to use different names for the parts of a file. The
flexible naming is especially useful when the LFSs are used as autonomous file
systems as well as components in a PIFS. In that case the Bridge Server does not
have complete control over the LFSs and it may not be able to enforce uniform
naming. Also the LFSs may not have identical disk subsystems. If one LF'S uses
a large drive and another LF'S uses two small drives, the file names may reflect
the drive selection. These file system administration issues will be covered in
some detail in chapter 4.

3.1.3 Interprocessor Communication

The fastest communication medium on the Butterfly is shared memory. Bridge,
and the Bridge tools, avoid that facility as the primary communication path in
almost every case. If the system’s performance depended on the shared memory,
it could be argued that Bridge only demonstrated that a PIFS is practical on a
shared memory multiprocessor. We did not want to put such limitations on our
argument. Dual queue operations coupled with block memory transfers are used
to implement message passing for Bridge and the tools. Dual queue operations
and block copy are both supported in microcode on the Butterfly, and their
performance is comparable to that of message passing systems on other tightly-
coupled multiprocessors. Performance might change if our IPC mechanism were
replaced with operations that passed through a slower network, but our choice
of algorithms would remain the same.

37

Table 3.4: Low-level Chrysalis Functions

Operation BFly Microseconds
Remote block copy 50 + 380 per K
Local block copy 50 + 600 per K
Make object 1000
Make remote object 6100
Map object 1350
Eng 80
Deq 80
Start process (simple) 10000

Dual Queue Function

A dual queue is a LIFO data structure with two states. In one state the dual
queue contains a list of 32-bit enqueued data waiting for dequeues. In the other
state the dual queue contains the process IDs of processes waiting for data to
dequeue. A dual queue serves as both a synchronization mechanism and a tool
for passing handles for blocks of memory, processes, and other dual queues.

Bridge moves blocks of data with the following sequence of operations:
Receiver Sender
dequeue(QID)
OID = Create object
x = map object(OID)
block move data to x
enqueue OID on QID
dequeue returns OID
y = map object OID
block move from y

This protocol shows the receiver’s dequeue before any sender operations, but
it could actually take place at any time. If the sender has already enqueued data
the dequeue will simply return that data immediately. Typically the object
would be created and mapped at the sender’s end before the communication
eveut. It might even be mapped in advance at the receiver’s end.

The communication protocol would involve an enqueue and a block move at
the semder’s end and a dequeue, a map, and a block move at the receiver’s end.
Referrmg to table 3.4 and assuming that the sender had the communication
object created and mapped in advance, we see that the send time for a one-
kilobyte message is 730 microseconds. The receive time is 1860 microseconds.
The total elapsed time is a little over 2.5 ms, which is not unusually fast. Around
one millisecond is an excellent IPC time.

38

3.1.4 Simulation of Disk Drives

It would not have been practical to install a large number of physical disk drives
on the Butterfly. We chose to use the memory on about 70 of the Butterfly’s
nodes as a storage medium, and implemented software disk simulators that
intercept the device driver’s accesses to the disk and convert the device control
protocols into appropriate delays and data transfers.

The disk delays are simulated by two sleep times, a read sleep and a write
sleep. The simulator sleeps the appropriate interval whenever the drive is called
on to access data that is not in its track buffer. The track buffer protocol and
sleep intervals were chosen to approximate the performance of a CDC Wren IV
disk drive [CDC 88, 1988] (a standard SCSI hard disk drive with 18.5 ms average
seek time and a 32k data buffer).

We impose the average seek plus latency time on every disk access. For a
sophisticated file system this would be unreasonable, because many file systems
attempt to group disk blocks according to expected access patterns. EFS takes -
no special care with its allocation patterns or seek optimization. After it had
been running long enough to fragment the disk’s free space it would probably
fit our simulation quite well. '

For sequential reading on a single large file, the EFS/disk simulation com-
bination gives a ten millisecond read and a 31 millisecond write. In the area of
EFS’s strength it does well enough to compete with file systems on much faster
processors and comparable disk drives (see table 3.1). The measurements in
chapter 5 show that EFS performance loses about a factor of two under a less
predictable load, but the performance EFS delivers to tools is reasonable for an
8 mhz 68000.

3.2 Performance of Primitive Operations

3.2.1 The Measurement Environment

The figures in table 3.5 are taken from a simple program that uses the standard
interface to the Bridge server in order to read and write files sequentially. The
performance of open and write operations is essentially independent of p (the
number of file system nodes). Read operations pay an amortized price for startup
tasks that would be borne by the open operation in a more traditional LF'S. The
startup overhead includes initial reads of file header and directory information.
Average read time for typical files is more than a third less than disk latency
because of full-track buffering in our version of EFS.}

!Write operations actually pay an amortized startup price as well, but its effect on average
time is almost negligible, partly because writes take so much longer than reads, and partly

39

Table 3.5: Performance of Primitive Operations

Operation | Time in ms
Delete 20 - filesize/p
Create 145 4+ 17.5p

Open 80
Read 9.0 4 500p/ filesize
Write 31

The quoted performance figures are accurate average values when the file
system is accessing a large file sequentially. Any individual read or write is
likely to deviate widely from the average. We took histogram measurements of
read and write times (see figure 3.2) and found that the file system would read or
write much faster than the average time while it could satisfy the requests from
one of its caches. When the requested data was not in a cache, the system would
perform several disk accesses and change the equilibrium in its cache. That
access and several subsequent accesses would be well below average performance.
This non-uniform access time can be compensated for by application programs
with large read/write buffers and asynchronous I/O into the buffers.

Parallelism has c:ly a very weak influence on the performance of I/O opera-
tions on single records, but requests for more than one record can be parallelized
by the Bridge Server. This implicit parallelism gives O(p) speedup for large
blocks of data until the aggregate transfer rate saturates the calling processor.

The Create operation must create an LFS file on each disk. Bridge gains
some parallelism for this operation by starting all the LF'S operations before
waiting for them, but the initiation and termination are sequential, leading to an
almost linear increase in overhead for additional processors. Performance could
be improved somewhat by sending startup and completion messages through an
embedded binary tree.

The Delete operation runs in parallel on all instances of the LFS, but because
of the design of EFS it still takes time O(n/p + p) where n is the size of the
PIFS file being deleted. The additive p reflects startup time. The Bridge Server
could be implemented so startup time was reduced to logp, but the constant
factor for this term is so small that the improvement would be inconsequential.

Pre-Fetch

We tried to address the problem of irregular read and write times by imple-
menting prefetching in the Bridge Server. Each time it received a read or write

because of EFS peculiarities that make caching of directory information less effective for writes
than it is for reads.

40

Figure 3.2: Distribution of Read Times

— 3 1

10 15 20 25 30 35 40 45

Milliseconds

request the Bridge Server would transmit the request to the appropriate LFS,
then send a prefetch request for the next record to the next LFS. Our theory
was that the prefetches would ensure that every read and write was a cache hit.
This would result in improved and more uniform performance. The results were
slower access with no significant improvement in uniformity.

The expected operation sequence for the prefetch experiment was:

Server LFS1 LFS 2
Send read to LFS1

Send prefetch to LFS2 reading

Wait for read reading prefetching
Read returns prefetching

Close inspection of the prefetching results showed that the actual sequence
of events brought about by prefetching was:

Server LFS 1 LFS 2
Send read to LF'S 1 still prefetching
Send prefetch to LF'S 2 still prefetching

still prefetching prefetching
wait for read reading prefetching
Read returns prefetching

This sequence gave a nice performance improvement the first time around
the LFS cycle, but the second time around the access time was a little more
than a message time worse than the results without prefetching. A switch that
turned prefetching on and off depending on recent history would have improved
access time for the first p reads, but would not have made a noticeable difference
for programs that did thousands of reads and writes.

3.3 Implementation Experiences

The design of EFS makes major performance sacrifices to provide robust and
recoverable disk storage. These features contributed nothing to our Bridge ex-
periments. The widely variable performance of the file system made analysis
difficult, and the unusually expensive delete operation had an unfortunate effect
on the absolute performance of our tools. The high-performance copy operation
supported by EFS might have proven an advantage for a copy tool, but we chose
not to use it because it is non-standard.

We used a subset of the spartan EFS command repertoire. It would have
been far easier to work with a feature-rich file system, but the restricted EFS
environment forced us to create portable tools. The algorithms we used should
work efficiently on any system that performs well at sequential reading and

42

writing. The difference between EFS’s sequential I/O and its slower file opera-
tions is dramatic; according to IOBench figures [Rinko-Gay and Varhol, 1989],
EFS’s penalty for random access is much more pronounced than any compa-
rable file system.? This may have skewed our design choices toward sequential
I/O, but strong evidence [Floyd, 1986; Ousterhout et al., 1985; Floyd, 1989;
McKusick et al., 1984; Satyanarayanan, 1981] suggests that applications almost
invariably use sequential access in any case.

We considered the possibility that EFS’s file deletion performance may have
influenced our tool designs, but our consistent use of standard algorithms for
tools alleviates this concern. EFS did not exist when mergesort became the
standard file sorting algorithm. Since our tools do use delete, we have to show
that our good results do not depend on slow deletion. This is a reasonable
concern. File deletion at the tool level is entirely parallel and file deletion time
is more than twice the time it takes to read the entire file. Our most important
measure for tools is scalability, and file deletion represents an O(n/p) interval of
linearly scalable activity. When we present the results of our tool experiments
in chapter 5 we will use our analysis to predict the tool’s performance on a
canonical high-performance file system. This technique would detect tools that
depend on EFS’s performance peculiarities.

In summary, the principal redeeming feature of EFS was its availability.
It has difficult performance characteristics that we fixed to some extent but
ultimately had to tolerate. EFS also has some nice features that we had to
ignore to support our claim that a PIFS doesn’t call for special features in the
LFS. The Bridge Server is a comparatively simple program. It does not use
enough time to make optimizations useful and its functions are quite simple.

3.4 Summary

Bridge is a straightforward implementation of a PIFS. It uses a “real” file
system as an LFS, and its performance on the most important operations is
in many cases somewhat better than other file systems with similar processors
and disk drives. Bridge is particularly good at sequential I/O. Largely because
of its high-performance disk drives, EFS sequential access on an 8 mhz 68000
compares with the Xenix file system on a fast 80386. Bridge is not good at at
random access, but the effect of this shortcoming is small.

We believe that the behavior of Bridge is typical of a PIFS on the class of
hardware we use. Bridge deviates from this standard only for random access and
file deletion. We seldom use random access, so it has little effect on our results.
We do use file deletion, so we will consider the effect of deletion performance

?Here we classify EFS with file systems from Unix, MS-Dos, 0S/2, 0S-9, VMS, and MVS.

43

when we evaluate the performance of tools. Measurements taken on Bridge
accurately characterize PIFS performance for most programs. Measurements
combined with algorithm analysis can project beyond our implementation to
PIFS in other hardware and software environments.

44

4 Meta-Issues

A usable file system requires more than a convenient program interface and high
performance. A production file system should run without data loss for decades.
When hardware fails, recovery should be quick and painless. Some people care
about security; the file system should provide for them. System administrators
like to add disk drives and adjust load balance to fit their concept of optimiza- .
tion. A good file system must certainly accommodate system administrators.

Our PIFS implementation is on a Butterfly, but it was carefully written as
a generic parallel program. No aspect of the design or the implementation is
specific to the Butterfly or a shared memory architecture. Our PIFS design
should run well on any reasonable hardware.

The PIFS design accommodates all the above concerns. Some features, like
flexible hardware configuration, fall gracefully out of the design. Other features,
like security and resistance to failures, are straightforward enhancements. In
this chapter we will discuss each requiremerit and show how a PIFS can meet
them.

4.1 Resiliency

The large number of hardware components in a non-redundant parallel computer
makes the machine very sensitive to unreliable hardware. The obvious solution
is reliable hardware. If sufficiently reliable hardware is not available, redundant
design gives excellent reliability. A PIFS adapts well to redundant hardware.
In this section we will show that a PIFS can get a better error rate than a
conventional file system with ten percent disk overhead, no performance penalty
for reads, a small constant factor performance penalty for writes that have no
explicit parallelism, and only a factor of two slowdown for writes of more than
p/2 records in parallel.

The reliability of a system of independent components can be calculated
from the failure probabilities of each component. For a PIFS with one disk
drive on each processor, the failure of a single disk or processor will result in a
partial failure of every file represented on that disk. For most purposes, partially

45

\'/

destroyed files are useless. Therefore a failure that causes data loss anywhere
in a PIFS should be considered a total failure. The components of a PIFS are
roughly independent, so the probability of flawless operation for an entire PIFS
is the product of those probabilities for all the components.

An excellent-quality disk drive can be expected to run without failure for
an average of 60,000 hours [CDC 88, 1988]. The failure rate is not a simple
function of time, but given a file system with many disk drives of different ages,
a uniform failure rate giving a probability of failure of 1.28 percent per disk per
month is a good estimate. That is a 98.7 percent chance of no failure. With 100
disks, the probability of flawless operation drops to 28 percent which gives a 72
percent probability of a failure in a month.

More reliable hardware would increase the reliability of the file system with-
out altering the file system. A hardware solution is simple and efficient because
it 1s invisible to the file system, and the extremely high reliability of RAID stor-
age demonstrates the practicality of a hardware solution. The probability of
failure for RAID storage can be made 0.012 percent per RAID per month or
better [Gibson et al., 1989]. An entire PIFS system composed of 100 RAIDs has
a 1.2 percent chance of failure in a month—better than a single disk drive.

A second approach is simply duplicating (or “mirroring”) hardware such
that every record is written on at least two independent devices. This reduces
the probability of failure to approximately zero even for parallel systems, and
performs about as well as a system with no redundancy. The only flaw with
this solution is its expense. It doubles the hardware cost of the file system and
provides storage that is not appreciably more robust than the parity scheme that
will be discussed in the next section. Parity on striped disk is reliable [Garcia-
Molina and Salem, 1988| and uses less disk overhead than mirroring, but it is
only reasonable when at least three or four disk drives are attached to each LFS.

4.1.1 Parity Records

When RAIDs, locally striped storage, or mirrored storage are not practical,
redundancy can be implemented in the PIFS. Our solution is inspired by the
RAID parity disk technique and the similar technique used for striped disks
[Garaa-Molina and Salem, 1988]. We keep parity information across bevies of
LFSs. Amy single failed LFS in a bevy can be recovered by calculating the
parity on the remaining LFSs in the bevy. Our parity system is distinguished
from other similar schemes by the algorithm we use for parity record placement.
Our algorithm is tuned to the PIFS performance characteristics.

The division of a PIFS into bevies is a characteristic of each PIFS file. Each
PIFS directory entry for a file must indicate the bevy membership of each pro-
cessor serving a file. This permits various-sized bevies even within a single file.

46

We interleave parity records with ordinary data records using an algorithm
that minimizes the probability of having concurrent data and parity writes on
any processor. The constraints on parity placement are:

1. A parity record must not be stored on a LFS that contains one of the
associated data records, and the data records must all come from different

LFSs.

2. For parallel writes of consecutive records, as many records as possible
should use different LFSs for parity records.

3. For non-parallel sequential writes, the average “distance” between par-
ity records and their data records should be maximized. Asynchronous
writes can concurrently write a multiple sequential records, building up
parallelism until they reach a processor that is busy writing parity for an
earlier write. The further the parity records are separated from the data
records, the more parallelism asynchronous sequential writes can achieve.

We will show that these constrains are satisfied by the following parity placement
rule, illustrated in figure 4.1:

Consider a bevy as a (R x B) array where B is the number of pro-
cessors in the bevy and R is the number of records (data and parity)
in each LFS-level file. R will be B/(B —1) times as large as it would
have been without parity.

Parity for the bevy is stored in a companion bevy which must contain
the same number of processors. The processors responsible for a
PIFS file form an array of bevies Gy,G3,...,G, where n is even.
Companion bevies are spaced as far apart as possible: bevies G, and
G, are companions if and only if

la ~ b =n/2. (4.1)

We can identify a record by its row r and column ¢ within its bevy,
with numbering starting at zero. Parity records are those for which
¢ = rmod B. The jth parity record (again counting from zero) is
located at (7,7 mod B).

A data record located ¢ records beyond the jth parity record in its
bevy contributes to parity record number k = B|j/B| +i— 1 in
the companion bevy. Conversely, the data records for the kth parity
record are located : = k mod B + 1 records beyond parity records
Jo = B|k/B] through j,., = B|k/B| + B — 2.

47

In terms of row and column coordinates, the data record at (r,c¢)
contributes to the companion parity record at (z,y), where

¢ = B|r/B|+i-1 (4.2)
= ;-1 (4.3)
= (c¢+ B(r mod B)) mod (B + 1). (4.4)

The parity record at (z,y) is constructed as the XOR of the com-
panion data records at locations of the form (r,c), where

r = Blz/B|+ |g/B] (4.5)
¢ = gmodB (4.6)
g = y+1+¢(B+1) 0<t<B-1 (4.7)

The presence of parity records forces a change in the PIF'S placement
rule for data records. In a PIFS without parity, the bth record, S, of
a file interleaved across p processors would be record |b/p| on LFS
bmod p. In effect, S’s coordinates in the PIFS as a whole would be
(z,y) = (|b/p],b mod p). If | is the first LFS in the bevy containing
the LFS y, the coordinates of S within the bevy would be (z,y —)
in the absence of parity. In a PIFS with parity, S is still placed in
the bevy of LFS y, but its coordinates (7, ¢) must be chosen in a way
that accommodates parity records interspersed with data. We can
think of S as data record number m = zB + y — [within its bevy.
Since there are B — 1 data records per row, r = |m/(B —1)|. In row
r, a parity record occupies column r mod B. Let d = m mod (B—1).
Then

c=d if d <rmodB otherwise ¢=d+ 1. (4.8)

Data records in figure 4.1 are superscripted with their position in the PIFS
file as a whole. When reading a file sequentially, a bevy of size B contributes B
consecutive records (not B — 1) during each complete cycle through the LFSs.

The following three lemmas demonstrate that the parity placement rule obeys

the three constraints on parity placement.

Lemma 1 No parity record is stored on a LFS with a data record used to con-
struct the parity record.

Since there are at least two bevies, by equation 4.1 the data and the parity

records will be in disjoint bevies. Since the parity and data records are written
into different bevies they cannot fall on the same LFSs.O

48

Figure 4.1: Placement of Parity Records for B = 4,p =8

Bevy 0 Bevy 1

Py 0o 1 29 e Py 4, 55 66
33 Py 8o 9, ce T7 Py 124 135
10, [113 | Ps | 160 || ... |[14¢ | 157 | P2 | 204
17, | 18 | 195 | Pr || ... || 215 | 22¢ | 237 | P
Ppo 243 259 | 2610 |1 ... Ps 2819 | 2913 | 3054
2711) Pia | 325 | 335 || ... |} 3115 | Po | 3612 | 3713
3410 | 3513 | Pra | 405)| ... |l 3814 | 3935 | Pio | 4412
414 4210 431, P15 e 4513 | 4644 | 4715 Py

This figure shows the place-
ment of data and parity.
records for two bevies of
4 processors each. The
cells labelled P; denote par-
ity records, and the corre-
sponding data records are la-
belled with <.

The pattern shown in the fig-
ure will repeat through the
entire LF'S.

Lemma 2 The chosen placement rule will mazimize the number of consecutive
records that use different LFSs for their parity records.

Since parity records are always stored in the companion bevy of a data record, it
suffices to show that the placement rule prevents any B consecutive data records
in a bevy from using the same parity record.

By equation 4.3 any set of p consecutive records will not share a parity LF'S.

Since there are a total of p processors, p is the largest number of records
(under any selection rule) that can use different LFSs for parity records. O

Lemma 3 The chosen parity placement rule mazimizes the average distance
between parity records and their data records.

The maximum possible distance between any two records is p/2.

A group of B data records cannot be on separate processors and all be at a
distance of p/2 from their common parity record. Since p is restricted to even
values, only one processor can be p/2 processors distant.

49

Our placement rule locates each parity record at a distance of p/2 from the
center of a contiguous group of data records. The average distance to records in
a group of n 1s

p n
A == - 4.9
94 27 4 ()
for n even and 1
p n
——_—— — 4.10
2 4 + 4n ()

for n odd. To achieve a greater average distance, we would have to place more
than n/2 data records at a distance of p/2 — n/4 or greater from the parity
record, which is impossible without putting more than one of them on the same
LFS, a violation of constraint 1. O

Avg, =

The number of processors between companion bevies is

s=2_B.
2
The placement rule for the companion bevy places the companion an equal .
distance before and after the first bevy. Any change in the rule would move the
cowmpanions closer together. '

Theorem 1 The PIFS parity placement rule satisfies the three constraints on
parity placement.

Lemma 1 shows that the PIFS parity placement rule satisfies the first con-
straint, lemma 2 shows that the PIFS parity placement rule satisfies the second
constraint, and lemma 3 shows that the PIFS parity placement rule satisfies the
third constraint.O

4.1.2 Organizational Impact

It is consistent with the PIFS design philosophy to make the parity placement
rule visible to the PIF Server and tools. Tools would be seriously hindered if
they did not know the rule that controlled placement of records. Since parity is
not local to each LFS, it must be maintained above the level of the LFS. We
will show in section 4.1.3 that tools can be more efficient if they are allowed
to maintain parity records, so we place responsibility for parity maintenance on
the PIF Server and on each tool.

Parity updates could form a sequential bottleneck on a single-process PIF
Server that managed parity operations. Each write operation spans two pro-
cessors which would communicate through the PIF Server. This bottleneck can

50

be alleviated by using a multi-processor PIF Server with a process located with
each LFS.

The visibility of the parity operation is consistent with the file system’s policy
toward tools. If parity is defined as part of the PIFS-level structure of the file
system, exposing parity structure to tools does not expose the file system to a
level of harm that was not already possible; i.e., corruption of the PIFS-level file
structure. Furthermore, tools cannot fully optimize an algorithm if they cannot
direct an operation to a particular LFS.

Some tools, particularly those tools that produce little output, might not
need highly-optimized parity maintenance. Since parity maintenance is fairly
involved, it is a good application for a library package or parity server. The
slowest and easiest path for tool output would be through the PIF Server’s
standard or parallel-open interface.

4.1.3 Performance Impact

We would like the PIFS parity scheme to have the minimum possible impact on
PIFS performance. This section will sketch algorithms for I/O in the presence of
parity records and use them to fix lower bounds for the parallelism and execution
time of the basic PIFS operations.

Read A simple, single-record read will only see a small constant factor slow-
down from parity. This slowdown comes from the slightly more involved record
placement algorithm that would be implemented in the PIF Server, and the
additional code that would skip around error recovery routines.

Reads for many records in parallel will lose no parallelism and will only see
a small constant factor slowdown. One out of B of the records in PIFS storage
will contain parity information, but data reads will ignore those records. The
parity placement rule leaves data records distributed such that a read can access
p — 1 records in parallel.

Lemma 4 Data record placement as modified by the parity mapping leaves at
least p — 1 consecutive records on distinet LFSs.

The path from an LFS z in bevy G, back to that LFS or an LFS after it in
sequential order as mapped by equation 4.8 passes through every other bevy.
This gives p— B concurrent accesses. Added to this are any concurrent accesses
in G,.

Every access between z and the first access in another bevy is contention-
free. The access directly before control moves to another bevy reaches the LFS

51

before the LFS handling parity for that row. Contention may occur with the
accesses after G, is reentered. The bevy will be reentered at the LFS after the
parity LF'S. If « is on the LFS directly after the parity LFS, the return to the
bevy will contend immediately, but the bevy will already be fully occupied with
B accesses. If z is any other record, then the shift caused by the parity record
(by equation 4.8) will cause contention (not necessarily with ¢) with B —1 LFSs
active in bevy G,.0

Sequential Write The obvious algorithm for a simple write with parity main-
tenance is at least a factor of two slower than the write without parity mainte-
nance. The operation can, however be parallelized enough to reduce the slow-
down to about the time for an IPC operation and two bitwise XORs.

The obvious algorithm for a write without parity maintenance is:

if the write is for part of a sector

read sector x into buf

move new into buf at the right offset
else

move new into buf
write buf into sector x

The obvious algorithm for a write with parity maintenance is:

read record x into buf

read parity record into buf3

XOR buf with new at the right offset giving buf2
XOR buf2 with buf3

write buf3 into the parity record

write new into record x

Written this way the algorithm entails two reads and two writes with no paral-
lelism. The two reads, however, can easily execute in parallel. The writes can
also execute in parallel, but there is an apparent exposure to failure between the
two writes; i.e., if one write succeeds and the other fails, parity is incorrect. The
exposure is covered by insisting that the file system must know if it experiences
a failure. Disk drives provide this notification with a read-after-write protocol.
I/O processors can fail invisibly, but this is unlikely and we ignore it.

Provided that we can rely on a failed disk to recover itself from the redundant
data in the rest of the bevy, either the data write or the parity write operation
can fail without causing data loss. We consider two cases:

52

e If the data write fails but the parity write succeeds, the error recovery sys-
tem will recover the data record from the bevy. The recovered data record
will have the value it would have had if the data write had succeeded.

o If the data write succeeds but the parity write fails, the error recovery
system will recover the parity record from the bevy. The recovered par-
ity record will have the value it would have had if the parity write had
succeeded.

The parity placement rule allows p consecutive writes without writing any parity
record more than once. Consecutive writes, therefore, cannot produce concur-
rent updates of a parity record. Random writes can call for as many as B — 1
concurrent updates of a parity record. The parity updates will serialize, but
they will not expose the system to unrecoverable errors. Any single failure can
be recovered by the normal error recovery algorithm. We consider two cases:

e If a single data write fails the parity will reflect the updated data and the .
data will be recovered to its state after the update.

o If the parity write fails it will be recovered to its state after all the parity
updates.

A write can be divided into two parts, one on the processor with the parity
disk, the other on the processor with the data disk. These parts are:

. Data Parity
read record x into buf read parity record into buf
XOR buf with new giving buf2
Send buf2 to parity processor
write new into record x receive buf2 from data processor
XOR buf with buf2
write buf2 into parity record

Note that the maximum path length is (read, XOR,IPC,XOR,write). This is the
best performance a PIFS with parity support can achieve on writes. We will
call a write with parity that updates the parity disk concurrently with the data
disk a write with full parallelism to indicate that the operation is as parallel as
possible.

Parallel Write A parallel write may be a write through the parallel open
interface or it may be driven by a tool. In either case, let us say the parallel
write updates m records from a PIFS file concurrently. Since a PIFS is optimized
for sequential access, the canonical parallel write is for m consecutive records.

53

There are two measures of parallel-write performance: time for a parallel
write, and maximum true parallelism. These measures interact. If the upper
bound on full parallelism is p/2, then a write for more than p/2 records cannot
run its data and parity updates in parallel. A write for more than p/2 records
will execute more slowly than a write for fewer than p/2 records.

A trivial upper bound on write parallelism is set by the number of available
processors, p. We can reduce this upper bound on parallelism with an observa-
tion. One record’s data processor may be the same as another record’s parity
processor. Since every write involves two concurrent operations, p processors
can support no more than p/2 update/parity-update operations in parallel.

Theorem 2 The PIFS parity placement rule supports full parallelism for p/2—1
concurrent writes of consecutive records.

By reasoning similar to that of the proof of lemma 4, any group of p/2 consecu-
tive records will be stored on p/2 distinct processors. Moreover, the correspond-
ing parity records will be stored on p/2 distinct processors that overlap at most
one of the processors writing the data. A PIFS with parity therefore supports
full parallelism for any write of + < p/2 — 1 consecutive records.O

All parallel wr-es that require more than p/2—1 processors will sequentialize
in the LFS such that some data and parity updates do not execute in parallel.

Tools The performance degradation associated with parity maintenance is
plainly visible to tools. A large class of tools for PIF'Ss without parity support
can run with almost no IPC. The requirements of parity maintenance shrink
this class substantially. Most tools that write to a parallel interleaved file will
have to communicate with remote processors. A simple implementation of a tool
that updates a file will include a remote parity update for every data update.
This will force even simple tools to contend with communication bandwidth. A
tool that simply copies a file without modification is an exception to this rule.
Since the data records are not changed, the parity records remain unchanged
and the entire file can be copied without regard for parity.

A tool can make some useful optimizations on the standard parity-preserving
operations. If it is willing to buffer a sufficient amount of output, a tool can
write the B — 1 data records that share a parity record with only one write to
that parity record.

Theorem 3 4 tool that writes a group of data records and their parity records
conemrrently has no unusual exposure to fatlure.

54

The file system with parity is recoverable from any single failure within a bevy
and its companion bevy. Two concurrent failures constitute an unrecoverable
error. So assume that a single write per bevy-pair fails.

If any single write in a bevy pair fails and all the others succeed, recovery
will repair the failed write.

So a write of n(B — 1) data records and their n parity records will recover
to correct data even if there is one failure per bevy pair.0

On computers that can send large messages almost as quickly as small mes-
sages, tools can reduce IPC overhead by building bundles of data for other
processors. When parity records are involved, the parity records can be bundled
with data records.

4.1.4 Recovery Protocol

A PIFS with parity implemented degrades gracefully as disks fail. It will con-
tinue to run even with a failed processor in each bevy pair, but each failed bevy
will lose all parallelism. When a disk or processor fails, every read or write in
its bevy involves all the processors in that bevy. Every read to a failed disk
becomes a recovery read, a parallel read to the entire bevy plus one read in the
companion bevy followed by a parity calculation to regenerate the lost record.
Parity writes to the damaged disk are ignored, but data writes entail a recovery
read followed by an ordinary parity record update.

When the damaged disk is repaired or replaced it can be restored online with
a tool that runs on the damaged bevies. The tool does a lock and a recovery
read for each record (including parity records) on the new disk, then writes the
new value without updating parity information kept on other disks and unlocks
the record. :

4.1.5 The Selection of Bevy Size

Since the probability of data loss is the probability of two concurrently failed
disks in companion bevies, reliability increases as B decreases, but storage over-
head for parity also increases as B decreases. In addition, smaller values of B
give better performance for concurrent writes, and faster recovery from failure.

A PIFS with parity will only fail if two drives in a pair of companion bevies
are out of service concurrently. If we suppose that failed drives are repaired once
a week, and use 60,000 hour (357 week) MTTF drives, the probability of one
drive in a bevy pair failing in a week is: (1 — (1 — 1/357)%%) = (1 — 0.9972?58),
The probability of data loss is therefore Py = (1 — 0.9972F)(1 — 0.9972(28-2))

55

which gives a mean time to data loss (MTTDL) of 1/P; weeks. For a bevy of
four drives, that works out to a MTTDL of 98 years for 1/3 extra disk storage.
For a bevy of 25 disks the MTTDL is 111 weeks for four percent extra space.
This MTTDL contrasts well with the 4 week MTTDL for a 100-disk system with
no parity protection, and is about a third of the 357-week MTTF of a single
drive.

Given the (p/2) — 1 bound on full parallelism for parallel writes, the loss
of B processors of parallelism for each failure, the higher reliability of smaller
bevies, and the rapid decrease in additional hardware cost as bevy size increases,
bevies should probably be no larger than 10 processors. A 10-LFS bevy would
have excellent reliability by conventional standards: 19-year MTTDL if disk
replacement and recovery takes no more than a week.

4.2 File System Maintenance

Hardware and administrative changes frequently affect a file system. The con-
figuration of a file system should be flexible enough to gracefully adjust to a
mutable environment. The storage capacity of a typical file system expands
rapidly. Old technology hardware is incrementally replaced with newer tech-
nology. File system parameters are tuned to improve throughput or optimize
crucial applications. A usable file system must make such activities convenient.
It must support partial reconfiguration without dumping and restoring the entire
file system.

4.2.1 Changes to p

The PIFS design allows casual addition of disks and processors. It also supports
on-line migration from a processor that will be removed.

The PIFS directory entry for each file includes a list of the processors the
file uses. This list is constructed when the file is created and used whenever the
file is opened. The set of disks available to new files can be controlled by the
system administrator.

When the file system gains a new processor the system administrator can
simply add that processor to the list of processors available for file allocation.
From that time on files that are created can use that processor. The processor
will gradually come toward full utilization. If this gradual process is unsatisfac-
tory the system administrator can copy some files. When a file is copied it will
read from the old processor set and write to the new processor set.

Removing a processor from the available processor list will only affect file
creation. The processor will not be included in any new creations and the

56

processor will gradually drain. When only long-lived files remain the system
administrator can copy the remaining files and decommission the processor.

The PIFS create operation can be instructed to allocate various classes of
files across different subsets of the available processors. This capability would let
files that are frequently used together occupy disjoint sets of processors, and let
the system administrator lighten the load on less powerful processors. Different
user communities could occupy their own sets of processors while making the
entire set of processors available for the jobs that need full I/O parallelism.

The location and span of files within a large PIFS can be changed with
mechanisms analogous to those used for adding and removing processors from
the file system. When the allocation rules for a class of files are changed, files
in the class will migrate to the new allocation. The residue can be moved with
copy operations.

4.2.2 Changing Disks

Actual disk drives are not really a concern at the PIFS level since they are
handled by the LF'Ss. The only constraint a PIFS puts on disk changes is that’
the LFS must not lose data in a reconfiguration. Disk changes may move files
within or between disks, or even cause a file to span multiple disks. The PIFS
knows LFS files by their LFS names, and it knows records by their location
within LFS files so only the names and internal structure of LFS files must
remain fixed.

4.2.3 Backup and Recovery

A PIFS with parity support can be unusually reliable, but it would be foolish to
rely too heavily on the file system’s integrity. The probability of failure cannot
be reduced to zero. Like any file system, a PIFS should be backed up regularly.
This is, of course, an operational tradeoff. Several hours of backups, cubic yards
of storage space, and plenty of administrative worry may be too much trouble
when the file system will run for decades without data loss. The main reasons for
backups in such an environment are user carelessness combined with file system
hostility (mistakenly deleted files), and major site disasters. No parity system
will protect against an earthquake that drops a building on the disk farm.

The backup operation is an appropriate application for a tool. The operation
can be phrased as “take every record in the file system and put it somewhere
safe;” that is, there are no inter-record dependencies. A backup tool could
therefore run at the parallelism of the file system. If every LFS includes a
backup device, backup can run entirely at the LFS level in time n/p where n is
the total size of the PIFS storage and p is the number of LFSs.

57

Recovery is equivalent to backup. Recovery from dismounted media, how-
ever, is not likely to be convenient. A backup from a large conventional file
system will span many tapes but the operator need only mount the tape that
actually contains the file in question. A PIFS restore will call for at least one
tape on every processor that has a tape drive. The solutions to this problem
involve hardware or administrative policies. If restoration of a file from backup
was only provided in case of data loss, the operation would be rare and it would
move a large amount of data (enough to restore a bevy). Very large capacity,
inexpensive backup devices such as WORM drives, might keep a large history
of backups on line. Restores from the recent past could read from the online
backup volumes without operator assistance.

A comparatively low performance backup would read files sequentially and
write all the records for a file onto one tape (or more if the file ran off the end
of a tape volume). This would slow the backup by passing almost every record
through IPC, but it would not call for an unusual number of tape mounts to
restore a single file.

4.3 Portability

One of the design goals for PIFSs was that they be adaptable to any sound
MIMD architecture, and we believe that we achieved that goal. We support
that assertion by briefly discussing the implementation issues for a PIFS in
several hardware and software environments. We have experimental support for
the portability of the PIFS concept in that the Bridge implementation depends
on no architectural feature that is not common to parallel computers.

4.3.1 Software Environments

A PIF'S consists of multiple processes on specific processors. At least some of the
processes should be protected and privileged. These are not unusual demands
to place on an operating system for a MIMD architecture.

To the extent that I/O hardware is localized to processors, the PIFS and
tools must be able to name the processors and bind processes to them. This
may force the PIF Server and tools to put hooks into the kernel. Operating
systems use the process as an abstraction of a processor and tend to hide the
names of the physical processors. This gives the operating system the freedom
to schedule processes without considering any binding the process may have
to a processor. The underlying assumption is that processors are equivalent.
From the viewpoint of a PIFS this is an invalid assumption. Processors are
characterized by their distance from each I/O device and their distance from
other PIF'S processes.

58

A PIFS requires a command that starts a process on a named processor and
locks it on that processor. If the operating system does not provide that service
to user processes, then the PIF'S must be a part of the operating system.

Protection and security require some operating system support. Privileged
components of the file system should be able to act on behalf of user processes.
When the PIF Server forwards a command to an LFS, the command should be
treated as if it came from the user process, not the PIF Server. Tools should be
able to access LF'S files either on behalf of the process that invoked the tool or
as the owner of the tool.

If the PIF Server and certain tools are trusted by the system resource pro-
tection mechanism, they can implement appropriate security. Capability-based
systems meet a PIFS’s security requirements easily. Unix-like setuid mechanisms
are also sufficient.

4.3.2 Hardware Environments

The PIFS design was created with three different parallel architectures in mind:
non-uniform memory access (NUMA) shared memory multiprocessors, uniform
memory access (UMA) bus-based parallel architectures, and message-based ar-
chitectures such as hypercubes. This concern is reflected mainly in the PIFS’s
concentration on locality. A PIFS treates interprocessor communication as a
scarce resource. This contributes to the scalability of the design; it also makes
the PIFS design suitable for machines with less facile IPC than the NUMA
Butterfly. :

The Bridge implementation of a PIFS uses message passing constructs for all
its IPC. We chose to use this approach because it makes IPC clear and because
it is efficient on all parallel architectures. For NUMA, a PIFS was designed to
minimize remote references (and implicitly memory contention). For UMA, the
performance role of remote memory references in NUMA is replaced with cache
misses and cache coherency traffic. These are not usually as important as remote
references are for NUMA, but they are not negligible especially in aggregate.
Many UMA machines are bus-based, and a bus-based machine is limited by its
bus bandwidth. By minimizing cache misses and coherency operations, a PIFS
minimizes bus traffic.

A PIFS is constructed of large, long-lived components that use large-grained
parallelism. For the architectures we have in mind, support for fine-grained
parallelism relies on fast thread creation and very fast IPC. A PIFS benefits
slightly from fast process creation and substantially from very fast IPC, but it
does not rely on them as a design based on fine-grained parallelism would.

59

4.4 The Local File Systems

A parallel interleaved file system is designed to work with an existing local
file system. Since the PIF Server offers transparent access to every feature of
the LFS that does not expose the parallel nature of the PIFS, a PIFS can be
superimposed on an LFS almost invisibly. A PIFS makes few requirements of
the LFS, but the PIF Server and tools must support logical record structure if
the LFS does not, and LFS support for variable-length logical records is very
helpful.

4.4.1 The Importance of Logical Records

Files structured in terms of logical records are crucial to a PIFS. Fixed length
logical records are easy for the file system to support and sufficient for a PIFS.
Variable-length logical records are useful and aesthetically appealing, but a PIF'S
(like a conventional file system) functions adequately without them.

A PIFS positions data according to the LFS’s unit of allocation. This favors
the file systems found on MVS, VMS and other operating systems designed for
commercial work. It places the Unix file system and other similar designs at
a serious disadvantage. Consider a program that operates on lines of data. If
the file is written as an array of lines, the program can ask for a group of lines
and have them delivered to different processes. If the file is written as an array
of bytes or other fixed-size units, some entity must scan the file to find line

terminators, and the PIF Server and tools cannot locate lines without readlng
the file. :

Fixed-length records can be implemented in an LFS or simulated by the PIF
Server on top of an LFS that does not implement logical records. The simulation
by the PIFS requires two changes to a non-record-oriented interface:

o The file creation request must specify the record length. That datum
must be saved as a characteristic of the file and recalled whenever the file
is opened.

¢ Read and write must restrict data length to an integral number of records.

If these changes to the interface are not acceptable, the PIFS can use a default
logical record length and split the I/O stream into logical records without regard
to semantics. A PIFS with such useless logical records would function, but tools
would be seriously hindered.

Variable-length records are aesthetically appealing and useful. The logical
record structure of a file is chosen when the file is created. Typically, the size of

60

the logical records can be fixed or allowed to vary within some range. Fixed-size
records are easy for the LFS to manage, but they work best when logical units
of data are of a fixed size. Lines of text are an excellent example of units of data
that have a variable length. There is a long tradition of 80-character lines based
on one of the original fixed-size record media (cards). Variable-length records
accommodate long lines without wasting space on filler for all the shorter lines.

This filler wastes disk space and I/O bandwidth.

For sequential access, a file of variable-length records may be more efficient
than a file of fixed-length records, but for random access variable-length records
require some form of index. The physical disk address of a variable length record
depends on the length of the preceding records. The file system requires at least
a table of the number of records per disk track to locate a track for the disk
hardware to search.

The length of a variable-length logical record is part of the information con-
tent of the record. Parity records and recovery programs must consider this
length value. A parity record must be longer than the maximum-length data
record by the length of the length specifier. This is usually 2 bytes, so a parity
record for variable-length records would have a length of the maximum data
record length plus two bytes. '

The designer of an application chooses efficient use of storage and I/O band-
width, or fast random access for each file the program will use. The tradeoffs
for a PIFS are the same as for a conventional file system.

4.4.2 Security

Our PIFS design has no direct provision for security, but it supports any security
mechanism supported by the LFS. This is an important feature for two reasons:
(1) The PIFS is automatically compatible with any existing security. (2) Tools
are not a security exposure and can access LFSs without special security con-
siderations. The only security measure required of the PIF Server is that it pass
the source of each I/O request to the LFSs.

Each LFS is a self-sufficient file system. Any security implemented at the
LFS level will apply to the components of parallel interleaved files stored on
each LFS. If each LFS component of a parallel file is protected, and each access
to the LFS reflects the true origin of the request, LE'S security will be effective.

If security were localized in the PIF Server, tools would have to be “well
behaved” in ways that are hard to enforce. Convention requires that tools open,
create, and delete parallel interleaved files through the PIF Server. If LFSs
have no protection mechanism they cannot defend against improper access by
tools, so we are forced to trust tools or force them through an interface that
implements protection. Protection based on trust is not protection, so secure

61

L

protection can reside in the LFSs or in an interface that lies between the LFSs
and tools. From the point of view of a PIFS, a layer between the LFSs and tools
is indistinguishable from LFSs that implement protection.

4.5 Disk Drives

The PIF'S strategy involves large numbers of I/O processors and attached storage
devices. The performance of the storage devices should be matched to the
performance of the LFSs and the aggregate storage capacity of the devices should
meet the users’ needs. Multiprocessor computers with many processors tend to
use powerful microprocessors. The processors in current multiprocessors match,
or slightly outpace, the best PC-type hard disk drives. If technology continues
on its present trends, within a few years a node will require several such disks
or a small RAID. Coincidentally, the class of disk drives that balance best with
an LFS also have the best price/performance. When performance is measured
in terms of capacity and transfer rate, price performance favors the middle of
the performance range.

Table 4.1 shows price performance information for a variety of -rcpres'entat‘ive
disk drives. The figures in this table are estimates, mostly taken from sales
literature and phone calls to salesmen, but they are accurate enough for our
purposes. The figure at the bottom of the table plots data rate per dollar
against the cost of a single device (and its associated controller). The variation
in cost is enough that the log of the price is used on the cost axis. The circled
point represents the CDC Wren IV disk drive. '

The Wren IV and the dozen or so other drives in and slightly below its class
fall at the knee of the price performance curve.! Although the high-priced drives
offer poor price performance compared to less expensive devices, simple high-
performance disk drives are good for single-processor file systems. Their primary
(and sufficient) features are that they are easy to manage and reliable. A PIFS,
however, cannot use a monolithic disk drive. Each PIFS processor requires at
least one disk drive, and unless each processor supporting an LFS was in the
mainframe class, very high performance drives would balance poorly with the
processors. Wren-class drives match well with a typical LFS and offer the best
available price performance.

Historically, the performance of processors has improved faster than disk

drives. We expect that in time a typical processor’s I/O requirements will move
out of the range of a mid-priced disk drive. This does not necessarily move a

LThe storage array price performance part of table 4.1 shows that the devices that offer a
good data rate per dollar also have a good storage capacity per dollar. The laser disk is much
the best device by this measure, but its data rate and seek rate rule it out.

62

Table 4.1: Price Performance for Assorted Disk Drives

Single Devices

Device Price Transfer rate Latency Capacity
IBM 3380 with a
Portion of a 3880 28000 3 Mb/s 1748 ms 1260 Mb
Fujitsu Eagle
with SMD controller 5000 2.4 Mb/s 18+8 ms 575 Mb
Wren 1V with
embedded controller 2000 2 Mb/s 1548 ms 340Mb
Laser disk drive 600 0.2 Mb/s 500 ms 600 Mb
Seagate hard disk with
a minimal controller 350 0.3 Mb/s 45+8 ms 20 Mb
Floppy drive
with WE Chip 100 35 kb/s 95+100 ms 660 kb
Storage Array Price/Performance T
based on a $12,000 storage system

Device Price Transfer rate Latency Capacity
3380/3880 28000 3 Mb/s 1748 ms 1260 Mb
2 Eagles 10000 4.8 Mb/s 1748 ms 1150 Mb
6 Wren IVs 12000 12 Mb/s 1548 ms 1800 Mb
20 Laser disks 12000 4 Mb/s 500 ms 12000 Mb
34 Seagates 11900 10.2 Mb/s 8548 ms 680 Mb
120 Floppy drives 12000 3.5 Mb/s 954100 ms 100 Mb

0.001 ®

[]
Mb/s
$
L]
® o
0
log($100) Cost log($30000)

63

PIFS off the knee of the price/performance curve. RAIDs can match the highest
price/performance drives to the data requirements of the faster processors.

4.6 Summary

In this chapter we considered issues that would affect a production parallel
interleaved file system.

A PIFS is record oriented. Either the LFS must support logical records,
or the PIF Server must add that support to the file system interface. Support
for fixed-length logical records is relatively painless at the PIF Server level, but
many file systems support logical records. Variable-length record support is
more difficult to implement than fixed-length records. Though a PIFS does not
require them, variable-length records conserve disk space and I/O bandwidth,
and they are more aesthetically pleasing than fixed-length records with filler.

We established that a parity scheme would make storage on a PIFS more
reliable than an ordinary file system with conventional disks. We discussed file
system maintenance procedures and showed that a PIFS can be reconfigured
and tuned about as easily as a conventional file system. A brief discussion
of the PIFS design’s dependencies on its hardware and software environment
demonstrated that the PIFS design is appropriate for any reasonable parallel
architecture. We showed that a PIFS easily inherits the full power of the file
system security mechanism supported by its LFS. Finally we showed that the
disk drives that meet the storage and performance requirements of a PIFS are
also a good price/performance choice. As microprocessors evolve these drives
may need to become RAID devices, providing higher bandwidth and storage
capacity, and potentially solving the PIFS reliability problem in hardware as
well.

64

5 Tools

The tool mechanism gives programs efficient, low-level access to a parallel inter-
leaved file system’s storage. Tools are the essential reason a PIFS scales well,
and a tool’s special position in the file system does not require arcane parallel
algorithm techniques or unusual programming discipline.

Our argument for the practicality of tools is based on experimental evidence
supplemented by analysis. Specifically, we built three substantially different
tools and designed several others. Each tool uses a small variation on the most .
standard algorithm for the problem, and each tool scales within the range we
could test (2 to 32 LFSs). Our analysis shows that they could be expected to
scale far beyond that range.

The appropriate measures for our experiments are: (1) did the obvious algo-
rithm adapt easily to a tool implementation, (2) does the resulting tool perform
well, and (3) does the tool scale well? Our ground rules for tool design and
implementation were:

"o Use an ordinary algorithm with as few adaptations to parallelism as pos-

sible.

¢ Fix major performance bugs but do not tune the tools.

We chose to implement tools for three well-understood problems: copy, sort,
and matrix transpose. The problems cover a range from obvious candidates
for implementation as a tool to a unusual selection. The problems best suited
to implementation as tools treat logical records as independent entities. These
tools always give O(p) speedup for problems that are large enough that run time
dominates startup cost. From this class we chose copy. We chose file sorting
as the function for a tool that exercises relationships between records. Copying
and sorting are obvious benchmarks for a file system. Sorting is so basic to
file systems that tools could be judged entirely on their support for file sorting.
According to Knuth’s volume on sorting and searching, [Knuth, 1973, page 3],
sorting averages over 25 percent of running time across all mainframe computers
and often reaches over half the computing time at particular sites.

65

Matrix transpose on an array of bits is not a common file operation, but we
chose to create a transpose tool because we expected it to challenge the tool
interface with extreme volumes of IPC.

In each case our tool used an obvious algorithm and scaled well. Our copy
tool is an almost-unchanged version of the obvious read/write loop. It achieves
linear speedup until performance becomes so good that non-parallel startup time
becomes noticeable. The sort tool is based on a simple merge sort. Its speedup
curve is linear through the range we measured, and we extrapolate good speedup
beyond 160 processors. The matrix transpose tool uses an iterative version of
the standard recursive algorithm. It gives good speedup through the range of
measurement and should continue to benefit from additional processors until
startup time dominates run time.

5.1 The Tool Interface

The tool interface consists of two PIF Server operations, access to the LFSs,
and a set of conventions.

Tools use a PIF Server operation that returns IPC handles for all the LFSs,
and another PIF Server operation that returns placement information for a PIFS
file. Together, these operations return enough information for a tool to open a
file at the LFS level. Once it has that access it must follow some guidelines to
prevent damage to the PIFS structure.

o A tool must call the PIF Server to create and delete PIFS files. It must
not use the LFS delete or rename operations to alter the characteristics of
a file that is part of the PIFS. o

e A tool must never set the number of records in a LFS constituent of a
PIFS file such that it contains fewer records than both its neighbors or
more than one fewer records than the LEF'S before it in the PIFS file. This
prevents “gaps” in the PIFS file.

e Any PIFS files resulting from a tool’s operation must be robust under a
PIF'S copy operation. Since a copy operation may change the placement
of a PIFS file and the number of LFSs participating in the file, this means
that records must not have a strong binding to an LFS and they must not
depend on the locality of other records.!

1A tool that compressed each local component of a PIFS without recording the context for
the compression would leave a file that was not robust under copy. Copy onto a different number
of LFSs would leave a file that would not uncompress successfully.

66

A tool may create and delete LFS files that are not part of the PIFS.
Tools tend to follow a standard outline:

Connect to the PIF Server
Get the LFS Handles from the Server
Get info on the tool’s input from the Server
Create output files if any and get info on them
For each LFS participating in a file

Fork a process on the LFSs local processor

Perform the bulk of the tool’s processing
in the local processes

Wait for all the processes to complete
Collect and return any results from the local processes

5.2 Copy Tool

Copying a file is the simplest example of a large class of file operations. These
are the operations that can be stated:

Record number z in the output file is function F of record z in the
input file.

For copying, F is the identity function. Other tools in this family include:

Transform where F maps strings to other strings with the restriction that
strings may not span records. '

Compress where any compression algorithm is applied independently to each
logical record producing a smaller output record.

Scan where the input file is tokenized into the output file. This type of scanner
is limited to languages in which tokens do not span records (lines).

Search for keys that do not span records.

All the tools in this class require time = O(n/p+log p) where n is the size of the
file, p is the number of processors, n/p represents run time, and log p represents
startup time.

Other operations such as count and summarize are closely related to copying.
They extract some small amount of information from records and produce no
file as output. If the information is very small compared to the size of the file,
these tools can run in time O(n/p + log p), but tools that return a substantial
volume of information may require T = O(n/p + nlogp) to pass the file and
return O(n) information up a tree.

67

5.2.1 Design

For our copy tool we started with the ordinary file copy algorithm:

open infile
open outfile
for each record 1 in infile
read record ¢ from infile into buffer
write from buffer into outfile record ¢
close infile
close outfile

This algorithm converts into a tool by starting a tool process local to each LFS
and using those processes to copy the records on their local LFS.

Time
open infile Copen
create outfile Cereate
for each LF'S start a process Cfo¥1;

[In the processes]
let L_infile be the local component of infile
let L_outfile be the local component of outfile
for each record ¢ in L.infile Cloop
read record 7 from L.nfile into buffer Cread
write from buffer into L_outfile record : Curite
for each LF'S wait for process termination Cioin
close infile v Cclose
close outfile Celose

5.2.2 Analysis

The expected execution time for this algorithm is:
T= Ccreate + Copen + 2C'clo.se + p(Cfork + Cjoin) + (n/p)(c'read + erite + Cloop)-

It could be reduced slightly by starting the processes more efficiently, but the
improvement would be trivial for substantial files and p in the range of our
experiment.

Table 5.1 contains constants for the analysis of tools. The values in the
column labelled “measured” were either taken from [Dibble, 1986] or measured

68

Table 5.1: Constant Values for Simple Tool Operations

Name Value in ms
Measured | Tuned | Optimized
Correate 689 689 100
Copen 100 100 30
CcIoac 0 0 10
Cork 15 15 15
Cloin 3 3 3
Cread 18 10 3
Curite 44 29 5
Cloop 0 0 0

Table 5.2: Calculated versus Measured Copy Tool Performance for a 20M File

Expected Measured
p || Time Rate || Time Rate

(sec) | (k/sec) |l (sec) | (k/sec)

1 1271 16.1

2 635 32.3 625 32.8
4 318 64.4 316 64.8
8 160 128.0 159 128.6
16 30 256.0 81 252.9
32 41 499.5)| - 42 489.2
64 22 940.3

128 13 | 1573.8
256 10| 1977.4
512 12 | 1640.4

in our sorting tool. The last two columns in the table will be used later. The
second column contains estimated constants for a tool with better buffering
than the copy tool implementation, and the third column contains estimates for
a high-performance LFS. Substituting the constants from table 5.1 column one
into the above equation gives:

T = 689 + 100 + 0 + p(15 + 3) + (n/p)(18 + 44)

with the resulting times shown in table 5.2 and figure 5.1.

69

Figure 5.1: Predicted Copy Tool Performance
1980 ¢+

kbytes/sec

0 processors 512

5.2.3 Measurements

The measured performance of the copy tool is also shown in table 5.2.2 These
copy rates are within about 2 percent of the predicted rates. The error is mainly
attributable to imprecise prediction of startup cost. The Chrysalis fork operation
does not have simple performance characteristics. Our startup costs varies by
at least a factor of two without obvious explanation. This imprecision is not
noticeable in the ten minute run time for a two-processor copy, but amounts
to about half a second for 32 processors, which is about one percent of the run
time.

Figure 5.2 plots the expected performance of copytool as a dashed line and
the measured performance as a solid line. The graph shows that the implemen-
tation closely matches our predictions, and scales well.

5.2.4 Extrapolations from Copytool

The EFS local file system works best when it is asked to read or write a single
file sequentially. When it is asked to switch between two files, as this copy tool
requires, its read and write times increase by about 30 percent. We speculate
that the copytool could be optimized by causing it to read several records, then

2Throughout this chapter measurements are accurate to well within a millisecond. Many
measurements of single operations vary by 10 to 100 percent; for these values we use an average
over enough samples that three runs do not vary in the least significant digit reported.

70

Figure 5.2: Predicted versus Measured Performance for Copy Tool

kbytes/sec

processors

32

Table 5.3: Predicted Optimized Copy Tool Performance for a 20M File

Optimized Tool

High-Performance LFS

Maximum Performance -

"p | Time | Rate p | Time Rate p | Time | Rate
(sec) | (k/sec (sec) | (k/sec) (sec) | (k/sec)
1 800 | 25.6]|1 164 1249 || 1 164 124.9
2 400 5121 2 82 249.5 |} 2 82.1 249.5
4 201 102.1 || 4 41 497.5 || 4 41.1 498.3
8 101 203.0 || 8 21 986.8 (| 8 20.7 991.1
16 51 400.8 || 16 11 1921.6 || 16 104 1961.3
32 26 775.0 || 32 6 3515.3 |] 32 5.34 3835.2
64 14 | 1420.2 || 64 4 5330.6 || 64 2.80 7319.5
128 91 21944 || 128 4 5514.3 || 128 1.54 13333.3
256 91 2404.6 (| 256 5 3808.1 || 256 914 | 22407.0
512 12 | 1770.9 (| 512 10 2118.8 || 512 612 33464.1
1024 | .470 | 43574.5
2048 | .408 | 50196.1
4096 | .386 | 53057.0

71

write them. The best time EFS can manage for reads is an average of about
10 ms; for writes EFS can reach 29 ms. The projected performance for that op-
timization is given in the optimized tool section of table 5.3 using constants from
the second column of table 5.1. A moderately high performance file system can
read about a megabyte per second and write at about 667 kilobytes per second.
The file creation time for such a file system is no more than 100 milliseconds,
and the open time for Bridge would decrease due to faster access time for the
Bridge directory. If such a file system were used, the copytool would be expected
to reach the predictions in the High-Performance LFS section of table 5.3, using
constants from the third column of table 5.1.

The predictions for the high-performance file system show that startup time
becomes a noticeable performance problem for 16 and 32 processors, and even
at that our analysis assumes that the computer can start processes without con-
tention for some resource. A copy tool with such a fast LF'S and such compara-
tively small files (20 megabytes) should probably start its processes in parallel.
A tool that used a logp startup algorithm would continue to profit from addi-
tional parallelism past 2048 processors. Predictions for a tool of this design are
given in the section of table 5.2 labelled Mazimum Performance.

Tools Similar to Copytool

We designed a number of tools to test the boundaries of the copytool class. File
compression was one of the more interesting exercises.

File compression poses a challenge for a PIFS tool. Record-by-record com-
pression is in the same class as copying a file, but it doesn’t work well for the
best compression algorithms or for LFSs without variable-length records. Run
length compression and adaptive Huffman coding [Gallager, 1978 work well in a
simple tool, but Lempel-Ziv [Welch, 1984] coding works best with large amounts
of input data. A single record is not enough.

For the compression techniques that work best with lots of input data, a
compression tool can use the entire local portion of a file. Each record must still
be mapped to one output record, but the compression algorithm can use context
from other records in the LFS file. Each output record in such a compressed file
must identify the records on which it depends, in case the file is reorganized.

An adaptive compression tool can process an LFS file by compressing each
record in the context of the previous record. This will give it enough input data
to build useful compression tables, but copying the output file to a different
number of LFSs may make the file decompress incorrectly. This difficulty can
be countered by adding links to the compressed data, or by saving in the file
the value of p for the file when it was compressed. If the decompression tool can
calculate the PIFS record number of the next record compressed by the same

72

tool component, a decompression tool will be able to decompress the file after
arbitrary copying. In the usual case file decompression will be a local operation.
Copied files may not decompress locally, but they will decompress correctly.

5.3 Sort Tool

File sorting is an obvious choice for a PIFS tool. Sorting is a heavily-studied
problem with great practical importance. A sort tool also represents an inter-
esting class of file operations: tools with data-dependent IPC. The O(nlogn)
sorting algorithms compare each record to logn other records. The pairings are
determined by the data, so by supplying a file of random data, we get largely
random comparisons, and many of the comparisons involved in sorting a PIFS
file will compare records on different processors.

Our implementation of a sorttool uses a simple version of the standard
mergesort algorithm. Our analysis shows that the tool should run in T =
O({(n/p)log(n/p)), and our measurements show that the implementation meets
the prediction. :

Our sorttool design relies on the large difference between IPC speed and I/O
speed. It is reasonable to assume that there will be a large difference, though not
necessarily as large as in Bridge. We used our analysis to predict the behavior
of sorttool in a number of hardware environments:

o With fast IPC, sorttool obtains nearly linear speedup past 160 processors
and continues to benefit beyond 512 processors.

e With slow IPC, sorttool’s speedup falls off around 30 processors.

o With fast IPC and a fast LFS, we can expect good speedup past 40 pro-
CESSOTS.

e With a fast LFS and slow IPC, our sort algorithm is not useful. It serializes
at about four processors.

In accordance with our ground rules, we implemented the standard file sort-
ing algorithm with the minimum possible adjustments to the tool environment.
The result was good speedup, but unexceptional absolute performance. At the
end of this section we suggest improvements to the algorithm that would give
much better absolute performance with a fast LFS and fast IPC and still give
speedup past 16 processors.

73

5.3.1 Design

An astonishing number of parallel sorting algorithms have been proposed [Bit-
ton et al., 1984]. Most are ill-suited for external sorting because they access
data randomly, read the data too often, or require a very large number of pro-
cessors. Among the few algorithms specifically designed for external sorting,
several require special-purpose hardware, assume a very small number of pro-
cessors, or have significant phases during which only a fraction of the processors
or disks are active [Bitton et al., 1984; Kwan, 1986]. In a recent paper Beck,
Bitton, and Wilkinson [Beck et al., 1988] detail their construction of a functional
parallel external sort. They chose an algorithm similar to ours: local quicksort
followed by parallel mergesort. Since they used comparatively few processors
(five), they were able to pipeline the entire multi-phase merge with one disk
read and one write. This gave them excellent performance, but poor speedup
‘past three processors and no speedup of the merge stage in the worst case.

For our algorithm we chose a more or less conventional merge sort because
it is easy to understand and has a straightforward parallelization. Our primary
objective was to demonstrate that Bridge can provide significant speedups for -
common file operations. Rather than invest a great deal of effort in constructing
the fastest possible sort, we deliberately chose to limit ourselves to an imple-
mentation with reasonable performance that could be derived from its sequential
counterpart with only modest effort. We conjecture that most I/O-intensive ap-
plications can be implemented on Bridge with straightforward parallel versions
of conventional algorithms; our merge sort constitutes a case in point.

A sequential external merge sort makes no unusual demands on the file sys-
tem (no random access, indexing, etc.) and runs in O(N log N) time. Given a
parallel merge algorithm, a log-depth parallel merge sort is easy to write. With
p processors and N records a parallel merge sort concurrently builds p sorted
runs of length N/p. It then merges the sorted runs in a logp depth merge
tree. Pseudo-code for this algorithm appears in figure 5.3. The first phase of
the algorithm sorts the records on each LFS independently. The second phase
merges the sorted records in neighboring pairs of LF'Ss. Assuming for the sake
of simplicity that p is a power of two, the final phase merges the records from
two collections of LFSs, each consisting of p/2 processors.

Since the final merge phase must read and write the entire file with whatever
degree of parallelism the merge algorithm provides, the time to run the merge
algorithm on the entire file places a limit on the performance of the merge sort
as a whole. Before the last pass, parallelism can come from both the merge
algorithm (running within a subset of nodes) and from the structure of the
merge sort itself (running in multiple subsets simultaneously). At depth ¢ in the
merge tree, the merge sort algorithm runs 2¢ merges in parallel, each of which
uses p/2' processors. If a merge on k processors can be fully k-way parallel (as

74

In parallel perform local external sorts on each LFS.
Consider each resulting file to be “interleaved”
across only one LF'S.
X:=2
while (x <= p)

Merge pairs of files in parallel

Consider the new files to be interleaved

across X processors
Discard the old files in parallel

x:=2%x

Figure 5.3: Merge Sort Pseudo-Code

we argue below for reasonable values of k), then each merge phase as a whole will -
be p-way parallel. The entire merge sort will display nearly linear performance
improvements as nodes are added to Bridge.

5.3.2 Merging Parallel Interleaved Files

A parallel interleaved file can be viewed as a whole or, at the other extreme, as
p sub-files, each local to a node. It may also be regarded as some intermediate
number of sub-files, each of which spans a non-trivial subset of the file system
nodes. The merge algorithm takes two sub-files, each spread across k nodes,
and produces a single sub-file spread across 2k nodes. To do so it employs two
sets of reading processes (one set for each of the source sub-files, one process per
node) and omne set of writing processes (again, one process per node).

The algorithm passes a token among the reading processes of the two source
sub-files. The token contains the least unwritten key from the other source sub-
file and the location of the process ready to write the next record of the output
sub-file. When a process receives the token it compares the key in the token
to the least unwritten key among its source records. If the key in the token is
greater than or equal to its local key, the process sends an output record to the
appropriate writing process, and forwards the token to the next reading process
in its sub-file. If the key in the token is less than the local key, the process builds
a new token with its own key and address, and sends that token back to the
originator of the token it received.

Special cases are required to deal with termination, but the algorithm gen-
erally follows the outline above. Figure 5.4 contains more detailed pseudo-code.

The parallelism of the merge algorithm is limited by sequential forwarding

75

76

token {
WriteAll
Key
Source
Number

}

Setup for the merge
Read a record
If this process initiates the merge
Build a token {false, key, MyName, 0}
where key is the first key in the local file

Send the token to the first reading process for the other file

Loop
Receive token
If (token.Key > record.key and not EOF) or token.WriteAll
Increment token.Number
Send token to next reading process for this file
Send an output record to the writing process
on LFS (token.Numher —1) mod p
Read a new record
Else
Build a token {EOF, file key, MyName, token.Number}
Send the new token to token.Source
While not EOF

If (not token.WriteAll)
Build a token {true, MAXKEY, MyName, token.Number}
Send the token to old token.source

Figure 5.4: Merge Pseudo-Code

of the token. On at least every other hop, however, the process with the token
initiates a disk read and write at the same time it forwards the token. For disk
sorting on a machine like the Butterfly, we will show that the token can undergo
approximately two hundred fifty hops in the time required for the parallel read
and write. This implies that the sequential component will be entirely hidden by
I/0O latency on configurations of well over 100 processors. Performance should
scale almost linearly with p within that range.

5.3.3 Analysis
Merge

The parallel merge algorithm is a close analog of the standard sequential merge.
The token is never passed three times without and intervening write, and all
records are written in nondecreasing order. The program therefore writes all of
its input as sorted output and halts.

For the purposes of this analysis, let p be the number of nodes across which
the output sub-file is to be interleaved and let N be the number of records in this
file. Let us also refer to source and destination sub-files simply as “files.”” Each
source file will of course be interleaved over half as many nodes as the destination
file, and will consist of half as many records. Moreover, the merge steps that
make up an overall merge sort will often manipulate significantly fewer records
than comprise the entire file, and will use significantly fewer nodes.

We will call the sequential part of the algorithm its limiting section. The
rest of the code can execute in parallel with disk I/O. The critical code is:

receive token ' kg
if (token.Key > record.key and not EOF) or token.WriteAll case 1 -

Increment token.Number ka

Pass token to next process -
else case 2

Build a token {false, file key, MyName, token.Number} ke

Send the new token to token.Source -

There are two cases in the loop, one taking time T, = k3 + k3 and the other
taking time Ty, = k2 + k. Since the first case will be executed N times before
all the records are written and the algorithm terminates, the total time used by
that code will be T,,N. The second case is executed whenever the token passes
from one file to the other.

7

A “run” is a string of records merged from the same file. A crossover stands
between runs. If C is the number of crossovers in the merge, the total time used
by case 2 is Tpq5,C.

To analyze the behavior of the algorithm as a whole, we must consider the
extent to which the limiting section can execute in parallel with disk I/O. The
second case of the loop has no paralle] part, but case 1 includes both a read
and a write: T,eqq = ks and T,rie = k4. The limiting section has the potential
to become significant when a process of a source file finishes reading its next
record before the token returns, or when a process of the destination file finishes
writing a record before being given another one. The time required for the
token to return to the same reading process can be as small as T,,p/2, or
as large as T,0e(p/2 + N/2) + Tpassmin(C, p/2), since it is possible for the entire
other source file to be traversed before returning. Similarly, the time that elapses
between writes to the same output process can be as small as T, 4p, or as large as
Tacep + Tpassmin(C, p). On average, the time to complete either a read or a write
“circuit” should be p(Tyey + TpassC/N). The extent to which individual circuits
deviate from the average will depend on the uniformity of the distribution of
Crossovers.

We want to discover the number of processors that can be used effectively
to sort. We must therefore determine the point at which I/O begins to wait
for the sequential token passing. Average case behavior can only be used with
care because an unusually brief circuit saves no time (I/O is still the limiting
factor), where: vnusually long circuit loses time by allowing the sequential
component to .i:nate. Fortunately, we can make the fluctuations negligible
in practice by allowing source file processes to read ahead and write behind.

Since the output file is interleaved across the same disks as the input files, we
will obtain linear speedup so long as every disk is kept continually busy reading
or writing records that need to be read or written. A source file process whose
disk has nothing else to do should simply read ahead. Finite buffer space will not
constitute a problem until the limiting section begins to dominate overall. In our
implementation, the timing anomalies caused by uneven crossover distribution

(on random input data) are rendered negligible with only one record of read
ahead.

Execution time for the merge algorithm as a whole can be approximated as

N N
Tmer_qe = Tfi:r:ed + ';Tdelete + max (NTact + CTpassa ;Tdisk> ’ (51)

where Tyisk = Tread + Twrite, and Tizeq 1s overhead independent of p. Each pass
of the merge sort algorithm should delete its temporary files; since the delete
operation for our LFS takes time ko per record, Tyetete = k10- Tfizea includes
the time required within each process for initialization and finalization. It also

78

includes the time T,,; required in one of the token circuits to recognize the end
of the first source file and build a WriteAll token. Per-phase initialization time
is ky. Teoy = ko + k7 + ke. If we let k;; be per-phase termination time, we have
Ttirea = k1 + (k2 + k7 + ke) + k1.

The merge algorithm will display linear speedup with p so long as p is small
enough to keep the minimum token-passing time below the I/O times; in other
words, so long as

Trcad 2 Tactg and Twri!e > Tactpy

i.e.
ZTread Twﬂ'te)
’

Tact Tact
If crossovers are close to uniformly distributed, the algorithm should actually
display linear speedup so long as p is small enough to keep the average token-
passing time below the I/O time; in other words, so long as

p S DPmazr = min ((52)

C
Tdisk 2 p(Tact + _A_,'Tpass)a

1.e.

Tisk \
—_— 5.3
Tact + %Tpass ()

p S Pmar =

To find an expression for P,.,; independent of C, we must determine the
expected number of crossovers in a file. This can be calculated by dividing the
number of possible occurrences of a crossover by the number of possible file
interleavings.® Given source files filef with n, records and file2 with n, records
and N = n; + n,, there are (71:) possible interleavings of the files. To identify
a particular crossover in a particular interleaving, we note that the crossover
can take place in any of N — 1 positions between records, and can be from
filel to file2 or from file2 to filel. Since it determines the source file of two

records, the crossover can be embedded in (f: :?) different interleavings. There

are therefore 2(N — 1)(,1:::21) different occurrences of crossovers among all the

different interleavings, or an average of

C= AN - 1)(’1:::3) - 2”‘@:1) _ 2mng
(m) ()TN

In our case, where n, = ny, C = N/2. Putting this back into equations 5.3 and

5.1 yields
Tisk

Pmaz = 717
e Tact + %Tpass

(5.4)

3Thanks to Ron Loui for this insight.

79

and

N X) (5.5)

——— N
Tme'rge = Tjired + _Tdelete + max NTact + —Tpassa _Tdisk
p 2 p

which we will henceforth use as our value for Tpepge.

Merge Sort

The local external sorts in the first phase of the merge sort are ordinary ex-
ternal sorts. Any external sorting utility will serve for this phase. Standard
external sorts will run (in parallel with each other) in time O(%loglpl). We can
approximate this as

Crlocal = Clocal_]\—r (1 + logi)]

p pB

where B is the size in records of the in-core sort buffer. The 1 inside the paren-
theses accounts for one initial read and write of each record, used to produce -
sorted runs the size of the buffer. Internal sort time is negligible compared to
the cost of I/O for merging. '

Referring back to figure 5.3, the merge algorithm executes log,p phases, for
r = 2,4,8,...,p (again assuming that p is a power of two). Phase = runs p/z
merges, each of which uses = processors to merge Nz /p records. The expected
time for phase z is therefore

N N N N
Tr. = Tfir.ed + _Tdelete + max (_xTact + _prasu —Tdiak) .
p p 2p p

If Tsiartup 1s the time required to create 2p processes and to verify their termi-
nation, then the expected time for the merge sort as a whole is

Tsort = T.startup + :rlocal + Z T.t (56)
r=2,4,8,...,p
N
= Tstartup + :rIocaI + 10gp Tfi:red + ;Tdelete (57)
- N Nz Nz
+ Y —Thisk + Y —T..+ z—Tpm.
r=2* 2<z<Pmaz =2 Pmaz <z<p P

If p is small enough that I/O always dominates, this is
N \
Taort = Lstartup + :rlocal + log P Tfi::ed + ;(Tdisk + Tdelete) .

80

Otherwise we have
N
Teort = Tstartup + Tloeat + UOg Pma:z:_l (Tfixed + 'I_)'(Tdi.sk + Tdclete)) (58)

N 1 log Frraz | +1
+—p_ (Tact + ETpass) (2P - 2l‘ g7)

Startup

Time is required to create the 2p processes used for local sorting and for merging,
and to detect termination when they are done. Let T,...;c = kg be the time
required to create a process and to notice its completion. If startup proceeds
sequentially we will have Tyartup = 2pToreate; if startup proceeds in a tree, we
will have Tyiarip = Tireatelog(2p) = Tireate(logp +1). In either case, the time
required to start a few hundred processes will be insignificant in comparison to
the time required to read and write the records of a large file several times. In our .
implementation of Bridge, Tsartup and Tyizes both make a negligible contribution
to Tyort. Below Prmaz we have

N .

Teort = Tiocal + ;108 P (Ttisk + Tieete) (5.9)
N N

= ; I:Clocal (1 + logz—)g) + logp(Tdisk + Tdclete) . (510)

In our implementation we obtain less than 1deal speedup with 1 1ncreas1ng P pri-
marily because Cioeat < Tiisk + Tielete- '

5.3.4 Performance

Given appropriate values for constants, our analysis of the sort tool can be used
to predict execution time (7y,:) and level of available parallelism (Pmez) for a
wide range of processors, disks, and architectures. In an attempt to evaluate
the accuracy of the prediction, we have measured the sort tool’s performance on
our implementation of Bridge.

Actual and predicted performance figures are shown in table 5.4. The better-
than-linear performance “improvements” with increasing p in the local sort are
not remarkable; they reflect the fact that each individual processor has fewer
records to sort. The predicted ratios of merge time to total sort time shown in
figure 5.6 illustrate the effect of the small amounts of local data.

Our local sort algorithm is relatively naive: a simple two-way external merge
with 500-record internal sort buffers. Initial runs are sorted internally with
quicksort. The local sort runs at about a quarter the speed of the Unix sort

81

——

Table 5.4: Sort Tool Performance (10 Mbyte file)

Merge Phases Local Sort Merge Sort Total
Processors Minutes Minutes Minutes Rate
Meas. | Pred. | Meas. | Pred. | Meas. | Pred. | (k/sec)
2 7.8 | 7.68 19.6 | 19.58 274 | 27.26 6.26
4 76| 7.68 76| 783 | 15.2] 15.51 11.00
8 571 5.76 27| 294 84| 8.70 19.62
16 38| 384 1.0} 0.98 48| 482 3541
32 24 2.40 03| 0.24 271 265| 64.52
64 1.44 0.12 1.56 | 109.21
128 0.84 0.06 0.90 | 189.28
256 0.51 0.03 : 0.54 | 318.06
512 0.33 0.02 0.35 | 491.29

utility. Presumably one would want to employ a high-performance local sort for
production use, but since we are interested primarily in demonstrating that the
concept of parallel interleaved files extends well to very large numbers of nodes,
there was no need to tune the local sort for our experiments. A highly tuned
local sort is of limited value even for an optimized sort tool. When p is larger
than 8 or 16, the local sorts make almost no contribution to total elapsed time
(see figure 5.6). From a practical point of view, the extra code space required
for a fancy local sort would also have used memory resources that we needed for
our buffers and simulated disks. Finally, the advantages of a multi-way merge
would largely be offset by degraded read and write times, since EFS uses a track
buffering scheme tuned for sequential access.

Our predicted performance figures differ only slightly from measured per-
formance between 2 and 32 processors. A detailed examination of timing data
suggests that the remaining inaccuracy stems from minor contention for the
local file systems that is not accounted for in the analysis.

Every process may have a read and a write in progress concurrently. The
local file systems, however, can only service one I/O request at a time. The
performance predictions assume that I/O requests are distributed uniformly
across the LFSs, but this is not exactly true. Write requests cycle through all
the LFSs in a set order; read requests depend on crossover distribution and so
are somewhat random. Occasionally a read and a write will collide at an LFS
and one of the requests will wait. If the merge algorithm blocked immediately
for each read and write, these collisions could degrade performance badly. We
therefore block for reads only when the data is actually used and for writes
only when a subsequent write is issued. This strategy reduces the program’s
sensitivity to collisions. Additional buffering would be likely to reduce it even
further.

Figure 5.5 plots predicted and actual performance figures up to 32 processors

82

Figure 5.5: Predicted Versus Actual Performance

700+ Local o 80'(Merge 65r Aggregate .
@
kbytes/sec
@ @
® ®
‘ ® * @ ° Actual
2 [® o Predicted
0
32 0 32 0 processors

Figure 5.6: Predicted Aggregate Performance

500 1 v100 %
|
1
;

kbytes/sec | merge
| time,
| percent
E
|
]
]
[}
]
]
|
!
!
1
1
]
I
|
b
[}
.;10

0 Processors 512

for the local sorts, the merge phases, and the overall sort tool. Figure 5.6 extends
these graphs with predicted performance on larger numbers of nodes. The dotted
line in the second graph plots the percentage of total execution time devoted
to parallel merge phases (as opposed to local sorts). Speedup begins to taper
off noticeably beyond the center of the graph, where I/O ceases to dominate
sequential token passing. Performance continues to improve, but at a slower
rate. The merge that uses 256 processors to merge two files will run at its IPC
speed. The earlier stages of the merge and the local sorts will, however, run with
p-way parallelism. This should cause the algorithm to show some improvement
with thousands of processors even though (as shown in the following section)
the last stages of the merge will reach a speedup of only about 160.

83

Table 5.5: Constant Values for Sorttool

Constant Value Source
k; - merge phase setup time 20000 psec | measured (avg.)
maximum 30951 psec | measured
minimum 118 psec | measured
k11 — merge phase termination time 0 usec | hidden in start of next phase
ky — receive token and following tests 253 psec | measured
k3 ~ update and forward token 28 usec | measured
kq ~ write a record (Tyrite) 45000 pusec | measured
ks — read a record (Treaq) 25000 usec | measured
k¢ — build and send a token 31 psec | measured
k7 - simple if 45 usec | measured
ks — start a process (Tereate) 48000 psec | measured
ko — end a process 300 usec | measured
k1o — delete a record (Tigetete) 20000 usec | measured
Clocal 45900 psec | measured
Tdisk 70000 psec k4 -+ k5
Toct 281 psec | ko + k3
Tpau 284 usec kg + ke
Tfized 20300 usec | ky + ko + ke + k7 + k11
Dmaz 160 | see equation 5.2
Pmaz 165 | see equation 5.3 or 5.4

5.3.5 Values for Constants

The figures in table 5.5 were obtained by inserting timing code in the merge
program. The timing statements inevitably introduced additional overhead,
but not enough to make a difference in performance. The predicted times in
tables 5.4 and 5.6 were calculated with equation 5.8 and the constants from
table 5.5.

Perhaps the most important figures in table 5.5 are the derived values for
Pmaz and Prgz. With the I/O, communication, and computation times found
in our implementation, and with fewer than 160 processors in use, there is no
way for a process to complete an I/O operation before being asked to perform
another one.

5.3.6 Extrapolation from Sorttool
Slow Communication

Equation 5.4 indicates that the number of processors that can be used effectively
to sort depends on the ratio of disk speed to processor and communication
speed. Very fast disks or very slow communication would cause P, to drop.
To illustrate this effect, consider the implementation of Bridge on a collection

84

Table 5.6: Theoretical Merge Sort performance with Slow Communication

Processors | Merge | Local Sort Total Rate

2 7.68 min | 19.58 min | 27.26 min | 6.26 k/sec
4 7.68 min | 7.83 min | 15.51 min | 11.00 k/sec

8 576 min [2.94 min [8.70 min | 19.62 k/sec
16 4.15min| 0.98 min | 5.13 min | 33.28 k/sec
32 324 min| 0.24 min | 3.48 min | 49.02 k/sec
64 273 min | 0.12min | 2.85 min | 59.89 k/sec
128 245 min | 0.06 min | 2.51 min | 68.07 k/sec
256 229 min| 0.03 min | 2.32 min | 73.48 k/sec
512 221 min | 0.02min | 2.22 min | 76.75 k/sec

of workstations with processor performance comparable to the Butterfly and a
file system similar to EFS, but with communication time increased by a factor
of 25, to about two milliseconds per message.

Equation 5.10 indicates that for small numbers of processors the hypothetical
system should perform only slightly worse than our Butterfly version. The 4 ms
increase in T,,isc has relatively little effect. However, T, and Tpq,, will increase
to 4120 and 4130 usec, respectively, driving Pme; down to 12. Predicted perfor-
mance figures are shown in table 5.6 and figure 5.7. Beyond about 32 processors
the serialization of later merge phases prevents the system with slow communica-
tion form obtaining additional speedup. As in the case of fast communication,
Pmaez Provides a very conservative estimate of available parallelism; continued
speedup of early merge phases allows the system to take some advantage of
additional processors well beyond Praz.

Very Large Files

The local sort phase will scale with p so long as the number of records per
processor does not become ridiculously small. Even so, as shown in figure 5.6, a
10 megabyte file is not large enough to let the local sorts contribute significantly
to the total sort time when there are more than about eight processors. For
much larger files, the effect of the local parallel sort is visible further out on the
curve, but the program still suffers a major performance loss when the merge
step sequentializes.

Figure 5.8 shows the predicted performance of the sort tool on files of size
10 Mbytes, 100 Mbytes, one Gbyte, and 10 Gbytes. The solid lines plot per-
formance, as in earlier figures. The dotted lines use the scale on the right-hand
margin of the graph, and plot the percentage of total time consumed by the
parallel merge phases. The top pair of lines are the same as in figure 5.6.

85

Figure 5.7: Performance with Slow Communication versus Fast Communication
190 1

kbytes/sec

0 processors 1 28

Merge rate (kilobytes/sec) is independent of file size, so the effect of file size
on the overall rate of mergesort is entirely due to the nlogn performance of the
local sort phase. The local sort phase makes mergesort slower for large files, and
causes the local sort to take a larger percentage of the run time for larger files.

The local sort uses a 500 kilobyte buffer. The time to sort the buffer is not
visible on the graph because it is so small in comparison to the time to read
and write. The lines describing the performance of the mergesort for 10 and
100 megabyte files therefore meet at 128 processors. At that point the local
sorts complete with no local merging. Their I/O time is linear in the file size,
so the sort rate (and conscquently mergesort rate) is effectively independent of
file size.

High-Performance Sorttool

We can project from sorttool’s performance to the performance of a highly tuned
tool with a high-performance LFS. We will make this extrapolation in two steps:
first we will simply modify the constants so they reflect a high-performance LF'S,
then we will investigate the effect of an improved algorithm.

We will use the estimated figures for LFS performance given in table 5.1
and additional figures in table 5.7. The new figures are reasonable estimates
for a good (but not exceptional) file system, and the IPC times are halved, a
reasonable guess for a tuned sort tool and a processor that could sustain the file

36

Figure 5.8: The Effect of File Size on Performance

] T 100 %
S0 T o eeme—mmpe——m————— e m——— :
[}
—————— 1
,,,, :

kbytesfsec (1 __---"" S~ __ ! merge

- time,
1 percent

10 megabyte file
100 megabyte file
1000 megabyte file
10000 megabyte file

b —————

o

0 processors 512
The curves nearer to the top of the graph represent smaller files.

Table 5.7: Estimated Constants for a Tuned Sorttool

Name | Time (ms)
Cdelete 100 per file

Toct 140
Tpass 142

system we are assuming. With these new values p,,,z becomes

8000
Pmez = 120 + 142/2 ~

37.

Since Tyartup does not depend on 1/0 speed, and Cjyeai scales with 1/O speed,
we substitute Clocal = Tyisk (because a high performance LFS would not give the
buffered reads of the local sort stage a great advantage), and Tgeece = 0 into
equation 5.10.

Toort =~ SOOOE (1 + log i\’_ + logp> .
p pB

At 32 processors and a 10 megabyte file, this sorts about a half a megabyte per
second. This a very respectable rate for a disk sort, but 32 processors is not the
ceiling we would like for scalability.

87

Improved Sorting Algorithms

The performance of the local sort phase can be improved by simply converting it
to a multi-way merge. The best we can do is one read and one write per record
for the local sort:

While not end of file
Read a buffer-full of input and sort it
Write the buffer
Start the parallel merge phase
Buffer the first record from each sorted run
Use the input buffers as the source for the merge phase

This improved local sort algorithm would substantially improve the local sort
phase, but it does nothing for 7,.,. With 32 processors, the sort would run at
about 3/4 of a megabyte per second. Performance gains fall off rapidly after 64
processors (see figure 5.9). Going from 256 processors to 512 processors barely
adds ten percent to performance. o

The P,,,; = 37 limit appears to be an inescapable restraint on tokerx-paséihg
sort algorithms on our hypothetical high-performance hardware. Below pyqs,
however, we can continue to improve the performance of the sort.

The parallel merge can be expected to work better if it can run without
intermediate files. The merge passes run concurrently, with each merge pass
handing its output to the next pass. Beck, Bitton, and Wilkinson [Beck et al.,
1988] used a variation of this algorithm that arranged the merge processes in
a tree. Files were at the bottom of the tree and sorted records flowed from
the root. Unfortunately, this strategy suffers a bottleneck at the root. Our
algorithm avoids the bottleneck by parallelizing each merge phase.

A pipelined version of the sorttool seems promising. The parallel merge algo-
rithm used in the sort tool can also be used with the passes running concurrently.
The output from the local sort need not be written to a file. The local sort can
fill a buffer that will serve as input for the local representative of the first pass
of the parallel merge. Likewise, each pass of the parallel merge except the last
can pass its output though a buffer to the next pass. The final pass must finally
write the data to record the sorted file.

Together with the optimized local sort, the pipelined parallel merge would
cut the mergesort to 2n reads and 2n writes. All the intermediate reads and
writes would be replaced with messages between sort passes. If we use kg and
k, from table 5.5 for intermediate write and read respectively, each partition of
each pass of the parallel merge becomes essentially sequential but very fast. The
passes run concurrently with a pipe-filling delay.

88

Figure 5.9: Sorttool Performance with Preliminary Optimizations

2080 1

kbytes/sec

P

0 processors 512

Table 5.8: Sorttool Performance with Pipelined Algorithm

Procs | Run Time | k/sec
1 173 sec. | 118.7
2 91 sec. | 226.1
4 50 sec. | 412.7
8 29 sec. | 702.6
16 20 sec. | 1083.1
32 14 sec. | 1485.3
64 11 sec. | 1823.8
128 10 sec. | 2058.2

256 9 sec. | 2199.6
012 9 sec. | 2277.7

89

Figure 5.10: Sorttool Performance with Pipelined Algorithm

22801

¢

kbytes/sec

0 7 processors 5i2

A sort tool th :ses this algorithm should be fast and scale well up to the
point where the sorts a file in T,et + CTpaqs/N per record. Only the local
sort phase and t: :al merge pass do any I/0O. This reduces read and write to
messages in the sai. .- performance class as the token-passing messages, and the
merges will sequentialize on token passing. There will, however, still be multiple
parallel merges in each pass except the last. These parallel merges will give the
first pass p/2-way parallelism and pass z will have p/2*-way parallelism.

All the merge passes will run in paralle]l with one another, and, since the
final pass has no parallelism, the final pass will only wait for data during the
local sorts and while the first record is passed up through a log p-depth tree of
merge passes. For large p, the running time of this sort tool would be:

Tsort

Tloca.lsort + Tpriming + Tﬁnalp&s
N

_(Tread + Twrite)

p

Tread + (log(p) - 1)(Tact + CTpass/N)
NTact + CTpaaa

N
;(Tread + Twritc) + Trcad (511)
+(10g(p) - 1)(Tact + CTpau/N) + NTact + CTpaaa

124

ﬂocalsort

Tpriming

Q

Tﬁnalpass

nort

Q

with results shown in figure 5.10.

90

Figure 5.11: Pipelined Mergesort

P1 P2 P3 P4 P5 P6 P7 P8
M) B)]] [)]

\\\ _—] T/

I~ r Final write
7

~—T"

|
2\
\ Merge pass 3

ZV/\\\ /b/\N\ Merge pass 2
//\\ / N / erge pass
1 []

Local sorts

The tight bottleneck imposed by the final merge pass will probably make
the processor contention from the other passes negligible, so it is not reflected
in equation 5.11.

5.4 Transpose Tool

We chose to implement file copy and file sort tools partly because they perform
heavily used operations, but we felt that our good results might, in part, result
from selecting problems that were known to be efficient operations on conven-
tional file systems. We wanted to build a tool that challenged the tool concept,
and matrix transpose seemed a good candidate, Matrix transpose on disk files
is not a heavily-used file operation, but it is potentially useful. Matrix transpo-
sition is a useful mathematical operation, and it is also used to rotate images by
90 degrees. A 2500 dpi bitmap image for a typesetting machine uses almost 7.5
megabytes per 8 by 10 page. That is large, but possible to manipulate in RAM.
A color image could easily be ten times the size of a monochrome image, and
even today 2500 dpi is ordinary resolution and more than twice that resolution is
available—few computers would casually transpose a 75 or even a 30 megabyte
array.

Matrix transpose is a simple operation as shown in figure 5.12. Our prelim-
inary analysis showed that the obvious parallelization of that matrix transpose
algorithm would run in T = O(n?/p) where n is the number of records (rows)

91

Figure 5.12: Standard Transpose Algorithm

for x = 0 to bound
for y = 0 to bound
tmp = array(x,y]
array[x,y] = array[y,x|
array[y,x] = tmp

in the file. That parallelization involves reading a row and writing each element
of the row to the appropriate record: n writes for each of n rows. On further
thought we settled on a T = O(nlogn) algorithm.

5.4.1 Design

The non-locality of the iterative matrix transpose algorithm shown in figure 5.12 .-
was hard to map efficiently onto a file, but the recursive transpose algorithm
shown in figure 5.13 has better locality. We converted the recursive transpose
algorithm to an iterative form and adjusted it slightly to adapt it to largely se-
quential file access. Figure 5.14 shows the input and the output of the transpose
algorithm on a representative 4 x 4 array. The double lines show the sub-matrix
size the algorithm is considering.

The conversion of the algorithm in figure 5.13 to a file processing tool de-
pended on the following observations:

o Each row of the matrix can be represented by a logical record.

e Transpose pass k divides each record into 2* sections (which we will call
grains). Half of these grains will remain stationary in this pass. The other
half of the grains swap with grains in a different record.

o A record (row) can be divided into its stationary and moving grains with-
out reference to any other record.

e Each Record in the output of a transpose pass is the result of the local
stationary grains, and the moving grains from a single record (that may
be remote).

Each local component of the transpose tool follows the outline in figure 5.15.

The tool does not continue witl the file-based transpose all the way down to
a grain length of one. When the grain size, b, is small enough that local memory

92

-

Figure 5.13: Recursive Matrix Transpose

Transpose(lowx, lowy, highx, highy)
midx = (lowx + highx)/2
midy = (lowy + highy)/2
if(highx > lowx)
Divide the input matriz into quadrants.
Swap the upper right quadrant with the lower left quadrant
and transpose all four quadrants.
SwapBlock(midx, highx, lowy, midy,
lowx, midx, midy, highy)
Transpose(lowx, lowy, midx, midy)
Transpose(midx, lowy, highx, midy)
Transpose(lowx, midy, midx, highy)
Transpose(midx, midy, highx, highy)

SwapBlock(lowx1, highx1, lowy1, highyl, lowx2, highx2, lowy2, highy2)
y2 = lowy2
for y1 = lowyl to highyl — 1
x2 = lowx2
for x1 = lowx1 to highxl - 1
swap matrix(x1,y1] with matrix[x2,y2]
x2=x2+1
y2=y2+1

93

Figure 5.14: Recursive Transpose Illustration

Pass One
1234 1(2] 910
51678 5/6[13|14
9 [10]11]12]|” "[3]a11] 12
13[14[15] 16 718]15] 16

Pass Two
1]z 90| 1[5l 9]13]
5/6(13]14 2 6]10] 14 |

=
3[4 11]12 [3][7]11]15]
[e[1s6] [a]s]2]10]

will fit an entire recordlength by b band of submatrices, the tool completes the
transpose in one pass by fully transposing each grain in memory.

5.4.2 Analysis

The only dependencies between the parallel components of the transpose tool
that show in figure 5.15 are the synchronization calls. These are barrier syn-
chronization calls that cause all the tool components to operate in step. The
analysis of the algorithm is, therefore, straightforward:

Ttpass = %(kl + kz + IC3 '+‘ k4 + k5 + ke + k7 + kg) + 2k12 (512)

Tirans = (logn — log b)Tipass + ﬁ(bkg + kio + bkyy)

Although the outline of the tool shows little explicit interaction between
tool components, the algorithm does cause interprocessor disk contention. The
operations on the lines labelled kg, k9, and k;; may be directed to a remote
processor. They may therefore contend with the local reads and writes of the
tool component on that processor as well as the operations from any other tool
components targeting that remote processor.

Our implementation makes some effort to smooth LFS response time. It
includes a dispatcher that allows each tool component to service its sequential
I/O buffer and information requests from other tool components and only wait
for sequential I/O when buffers are empty (or full). The read at kg is not
sequential, and since it is a random read, it is not buffered.

Provided contention among remote tool components for access to an LFS is
fair in the formal sense (that is, the number of times a process waiting for access

94

Figure 5.15: Transpose Tool Outline

This is a local component of a transpose tool that transposes an n-column matriz.

= columns / 2

whilek > b

for all local records do
Read record ki
Split into stationary and moving parts with grain length & ko
Write the stationary part into templ ks
Write the moving part into temp2 ks

sync() k1

for all records in templ o
Read templ ks
Read the corresponding moving part ke
Join parts of grain length n ks
Write the result ke

k=k/2

sync() k12

Transpose the remaining grains in memory.

A band 18 b consecutive rows of the PIFS file

for BandStart = 0 to Columns by (b * NumberOfLFSs)
fori=0tob —1

read a row of the band ' kg
Transpose the grains in the band k1o
fori=0tob—-1

write a row of the band k1

95

to an LFS can be passed by another process is bounded) ks can be expected to
remain roughly constant with changes in p. When p increases, more processes
contend for each LFS, but there are also more LFSs available. This assumes that
remote accesses are randomly distributed among the LFSs, which they are not.
In our implementation, when b is a multiple of p, p components will attempt to
read from the same remote LFS. They are, however, quickly separated as they
are serialized whenever they contend for an LF'S.

The local transpose at the end of the algorithm would appear to have a
serious contention problem, but we were able to reduce the contention to in-
significance. The algorithm includes a loop that loads the transpose buffer and
another loop that saves it back to the LFSs. If each component filled its buffer
starting at entry 0, contention would be maximized because a group of grains:ize
processes would read from a common set of processors in the same order. By
cycling through the buffer with each tool component directing its initial read
to a different processor the transpose array is not filled in the expected order
but the reads and writes are spread evenly across the local file systems. For
instance, processor zero might load eight records in the order (0,1,2,3,4,5,6,7)
which would access processors zero through seven in order. Processor one would
load its records (1,2,3,4,5,6,7,0) which would start at processor one. This rota-
tion keeps each processor uniformly loaded.

35.4.3 Measurement of Transtool

We tested our implementation of the transpose tool, Transtool, on 4096 x 4096
arrays of bits. We ran several trials at 32, 16, and 8 processors. We found a
consistent super-linear speedup (see figure 5.16), but we were able to trace this
to the odd properties of EFS. The basic algorithm has linear speedup as our
aaalysis predicted.

Using our implementation, we measured values for the constants in equa-
tion 5.13 (see table 5.9), and used these to produce predicted performance figures
as shown in table 5.10

Two properties of EFS give Transtool superlinear speedup: its O(n) access
tame for random access, and the strong influence of the EFS caches on perfor-
mance for very small files. EFS maintains files as linked lists. Random access
is implemented as a sequential search through the linked list. EFS will accept
a hint and bypass the search if the hint is correct, but without a hint, random
access is an O(n) -~ ~tion. Transtool uses random reads and random writes:

® kg is a ran. d
o kgisarando. .

96

Figure 5.16: Measured Transtool Performance

3 W
rows/sec
0 Pprocessors ;2
Table 5.9: Constants for Transtool

Constant p=2_8 p=16| p=32 Average
kq 13 ms 11 ms 9 ms 11 ms
kq 716 ms 668 ms | 679 ms 688 ms
ks 24 ms 27 ms 26 ms 26 ms
k4 24 ms 27 ms 26 ms 26 ms
ks 4 ms 4 ms 4 ms 4 ms
ke 478 ms | 311 ms| 213 ms | 125+ .69(n/p) ms
k~ 707 ms 698 ms | 695 ms 700 ms
kg 8 ms 7 ms 7 ms 7 ms
kg 31 ms 37 ms 41 ms 36 ms
k1o 384 ms 372 ms| 383 ms 380 ms
ki 167 ms 179 ms | 153 ms 166 ms
k12 5280 ms | 19747 ms | 7998 ms 11008 ms
Tirans 7294 s 3481 s 1605 s

97

Table 5.10: Predicted vs Measured Transtool Performance

p=2_8 p=16 | p=32
Measured time 7294 3481 1605
Estimate using average times 7328 3479 1793
Percent error 0.05% | —0.05% | 11.7%
Estimate using measured times 7262 3479 1626
Percent error —0.4% | -006% | 0.1%

o k;,; is a random write

For kg and %,,, we were able to give EFS a useful hint most of the time. For kg
we failed to produce good hints. The time for that read therefore depends on
the size of the local file, n/p.

A 4096 x 4096 array of bits only uses 2132 blocks of file storage. When
Transtool runs on 32 processors, the file only uses 66 blocks per processor. A
substantial part of that file will stay in EFS’s caches. This gives anomalously
good performance at 32 processors. If a larger array were used the cache effect
would disappear. e

Our predicted performance is within a twentieth of a percent of the measured

time for 8 and 16 pr -ors. At 32 processors we missed by almost 12 percent,
but we attribute tl.: i« EFS cache effect. Using I/O times that depend on
p instead of avercc: =5 reduces the error at 32 processors to only one tenth

of a percent.

5.4.4 Extrapolation from Transtool

We used the analysis and measurement of our transpose tool as the basis for
same cenjectures about better transpose tools. First we simply projected the
petformance of Transtool for up to 512 processors on a 40k x 40k-bit matrix.
It was slightly superlinear (see table 5.11 and figure 5.17). As discussed in
section 5.4.3, this superlinear performance is to be expected. Next we considered
the posaibility that Transtool’s success is an artifact of EFS. We re-evaluated the
Tramstool’s performance equation using the performance constants from table 5.1
extemded to cover the transpose tool (see table 5.12). Transtool’s superlinear
performance was eliminated by the ordinary file system, but the new figures were
still linear pa<- ~12 processors, and the tool continued to benefit substantially

from new pr:. -~ nast 4096 processors (see table 5.13 and figure 5.18).

From thi- -1: we conclude that Transtool’s superlinear behavior is
indeed an a: . - "ut the performance and scalability of a transpose
tool will rema. od with a typical LFS.

98

Table 5.11: Transtool Performance Extrapolated

Processors Time Rows per second
2 3,223,798 s 0.013

4 888,547 s 0.046

8 263,559 s 0.155

16 86,725 s 0.472

32 32,223 s 1.271

64 13,450 s 3.045

128 6184 s 6.624
256 3080 s 13.297
512 1661 s 24.658

Figure 5.17: Transtool Performance

24}

rows/sec

0 processors 51;

Table 5.12: Tuned Transtool Constants

kl 3 ms
kz 600 ms
k3 5 ms
k4 o ms
ks 3ms
ke 5 ms
ks 600 ms
ks 5 ms
kg 9 ms
kio| 300 ms
kll 7 ms
k12 | 3000 ms

Table 5.13: High-Performance Transtool Extrépolated Performance

Processors | Time Rows per Second
1 503,135 s 0.081
2 251,613 s 0.163
4 125,851 s 0.325
8 62,971 s 0.650
16 31,530 s 1.299
32 15,810 s 2.591
64 7950 s 5.152
128 4020 s 10.189

256 2055 s 19.932
512 1073 s 38.191
1024 581 s 70.468
2048 336 s 122.041
4096 213 s 192.469

100

Figure 5.18: High-Performance Transtool Performance
200 1

rows/sec

0 processors 4096
5.5 Experience with Tools

We have written and evaluated three tools. Our most important discovery is
that tools are a useful vehicle for high-performance file system operations. In
every case we were able to use the low-level structure of PIFS files to good
advantage and get good speedup through our target range of parallelism. Each
tool used a minor modification of the standard algorithm for the operation-in
question.

5.5.1 Design

Three aspects of the tool interface make tools easy to design:
1. Disk I/O is very slow compared to IPC and computation.

2. The PIFS structure lets any tool component use trivial arithmetic to map
from local address to PIFS address and back.

3. Each LFS is independent of all the other LFSs. The only connection is
the formal relationship maintained by the PIF Server.

Sorttool relies heavily on the first aspect of the tool interface. The tool has a
significant non-parallel component. Sorttool’s algorithm is

parallel part
Y et —
Toort = O((Tl/p) log(n/p) +n)7

101

where the first term is the parallel part of the mergesort and the second term
is the non-parallel part (see equation 5.8). However, the constant for the first
term includes disk reads and writes, and the constant for the second term is
dominated by IPC. The tool can use a substantial number of processors before
its sequential portion has any effect.

Both sorttool and transtool rely on the second aspect of the tool interface.
In sorttool the addressing is implicit in the token-passing trick used to locate
the next output LFS. In transtool each component of the tool freely reads and
writes records throughout the PIFS file.

Every tool takes advantage of the third aspect of the tool interface. The
copytool and all the other tools in that family are particularly good examples
of programs that use each LFS independently. The components of tools in
that class communicate only with the master process that starts all the tool
components.

5.5.2 Construction

We chose to implement our tools under the Chrysalis Operating System [BBN,
1987] and in the C language. We .7<0 set rigorous performance goals (by an-
alyzing the tools before we me:: { them) that required close attention to
detail. Copytool was written = ugged quite quickly. The other two tools
consumed man months.

Tool construction is not inher«:. - difficult. Construction of programs that
run reasonably efficiently in a real-time environment with mechanical (or simu-
lated mechanical) components is inherently difficult, particularly when the pro-
gram 1s required to meet exact performance specifications. :

A good tool cannot ignore the performance difference between I/O and com-
putation. Like the file system itself, a tool should consider optimized access
patterns, caching, buffering, and asynchronous activities. One job of the file
system, and by extension, of tools, is to get the best possible performance out of
a disk drive that runsin parallel with the processor and has complicated timing
properties. Tool construction involves considerations like:

® I can buffer up to ten read requests from various processors. How can
I sequence them to prevent cache flushes? Will that reordering cause

deadlock?

» How can this tool equalize I/O load with a minimum amount of synchro-
nization?

e Why is this read taking ten times as long as it should?

102

The PIFS structure never hindered our tool construction. For tools the PIFS
is primarily represented by a set of constraints. Though these constraints were
convenient for tool design, they were largely irrelevant for implementation.

5.5.3 Analysis

Our research is focused more on systems issues than theory, but we find nonethe-
less that the mathematical analysis of algorithms can play an important role in
this work. In the case of the merge sort tool, our analysis has proven extremely
successful. Informal analysis guided our initial choice of algorithm. Detailed
analysis uncovered important flaws in our implementations, and yielded trust-
worthy estimates of the number of nodes that could be utilized effectively. An
informal analysis of our sorting algorithm suggested that it would parallelize
well despite its sequential part. Further analysis confirmed that conclusion, but
only a full analysis, including all constant factors, could show the range over
which we could expect the algorithm to scale.

Our sorting algorithm is not parallel under asymptotic analysis. It is, how-
ever, simple and it is parallel over the range of parallelism that we have chosen
to address. There are numerous truly parallel sorting algorithms, but they don’t
have the simplicity of our merge sort. Some of these parallel algorithms would
use more than (nlogn)/p reads; others would use more than p processors; others
are too casual about access to non-local data.

Our analytical predictions accurately match the experimental results we re-
port in this dissertation, but our first experiments with sortteol and transtool fell
well below the predicted performance. For sorttool there were wide variations in
read times and there was less parallelism than expected. This cast doubt on our
analysis. When we included a simple model of contention for disk drives in our
analysis, we obtained a much better match with the experimental data. Unfor-
tunately, the equations became much more complex than those in section 5.3.3.
We then collected more timing measurements, which confirmed that contention
was a serious problem. Alerted to the problem, we were able to implement a
simple read-ahead scheme that eliminated almost all of the contention, thereby
improving performance and matching the predictions of the simpler version of
the analysis.

The implementation of transtool was seriously short of the predicted per-
formance until we noted that the hints we were providing for one read were
incorrect. Those incorrect hints changed a read operation from a constant time
operation to an operation that depended on the size of the local file. We could
not supply a useful hint, so we were forced to alter the analysis to reflect the
implementation.

103

A tool is hard to analyze for much the same reasons that it is hard to im-
plement. I/O operations are a significant part of the running time of the tool.
They cannot be ignored or easily approximated. An analysis may be seriously
incorrect if it incorrectly estimates the LF'S’s behavior.

Optimization by exhaustive analysis is too painful for us to recommend as
everyday practice, but in one instance analysis helped us uncover and repair a
serious performance problem, and in another instance the comparison between
predicted and measured performance located a problem we were not able to
repair.

Disagreement between the analysis and our initial performance results alerted
us to a performance “bug.” Agreement between the analysis and our final per-
formance results told us that the problem had been fixed. Actual identification
of the problem—disk contention, or failed hints—was a hit-or-miss affair. High-
quality performance monitoring and analysis tools [Fowler et al., 1988] would
‘have helped us find it sooner. Such tools are very good at identifying which
portions of a program are not performing as expected. They are of limited help,
however, if the programmer does not know what behavior to expect. An analysis
such as ours can help by providing a model of what the program should be do--
ing. It plays the role of a lower bound on run time—a self-sufficient benchmark
against which to compare empirical results. When those results fail to match
the analysis, there is either a problem with one’s understanding of the algorithm
(as reflected in the analysis) or with one’s realization of the algorithm in code.

104

6 Conclusion

Our parallel interleaved file system design meets our stated goals. It is compat-
ible with the standard file system interface, it performs and scales beyond our
expectations, and it has, or can support, the features that separate a production-
quality file system from a research test bed.

Our parallel interleaved file design makes the following contributions to the
field of computer science. ’

o We have shown that a parallel file system can balance the processor power
on large, general-purpose MIMD computers. In general, and within limita-
tions imposed by IPC performance and algorithm design, the performance
of a PIFS improves linearly with the parallelism of the file system.

o We introduced the concept of a file system tool. Our experimental tools
and calculations based on our measurements and projections show that

. the performance of tools based on “obvious” algorithms scales linearly
with the file system’s parallelism. Based on this evidence, we state that
tools are easy to design and are an effective mechanism for applications
that require high-performance 1/0.

o We showed that straightforwared interleavingis a practical record distribu-
tion strategy. Interleaved files have excellent performance characteristics
whether they are accessed from a tool or an ordinary program, and a
system management on a parallel file system based on interleaved files is
easy.

o We developed an error recovery scheme tuned for a parallel file system.
The design reflects the failure modes and performance characteristics of a

PIFS.

o We showed that file system maintenance and administration is not signif-
icantly more difficult for a PIFS than it is for a conventional file system.

Conventional file systems and other parallel file systems are inappropriate
for a large-scale MIMD computer. Uniprocessor file systems constrain the file

105

system to the performance of a single processor node. Other parallel file sys-
tems seem inappropriate for more than about ten processors. They are a clear
improvement over a conventional file system, but a parallel file system must be
judged in large part by its scalability.

The Intel parallel file system [Pierce] and other parallel file systems currently
under development implement parallelism at the lowest level of the file system.
Disks on multiple processors are treated as a single disk and a single file system
allocates sectors from the disks. File creation and deletion for this file structure
is not dependent on the number of processors; it may even benefit slightly from
additional processors. However, although the Intel approach works well for file
creation and deletion, it gets this performance by sacrificing some read/write
performance.! These file systems use a free list, so their allocation becomes
random. This will usually behave well, but not as well as the PIFS’s interleaving.
Random placement makes no guarantee that consecutive records will not fall on
the same processor. A tool can read a file with records placed pseudo-randomly,
but it will require a map of the file. Writing such a file is difficult since the next
record’s location is decided by the free list, a structure which is not defined at
the lowest level of the file system. ‘

Our parallel interleaved file system is practical and scalable. It has demon-
strated the ability to handle 32 I/O processors with little degradation. Analysis
shows that it should effectively use well over 100 processors if it has high-speed
IPC. This shows that the PIFS design may be suitable for MIMD computers
with 1000 processors or more.

Even for substantially more than 100 file system processors, a PIFS imposes
at most a small constant performance cost on I/O operations. Parallel file system
operations overshadow the overhead with a performance improvement that may
be as high as O(p). Even for operations with no explicit parallelism the overhead
can be outweighed by the file system’s internal parallelism.

A file system tool has access to the file system at a level that permits sig-
nificant optimizations that other file system interfaces do not support. The
standard file system interface, our parallel-open interface, and the various par-
allel interfaces used by other parallel file systems all fail to give programs full
access to the power of the file system. Only the tool interface reveals the lo-
cations of records to an application in a form that the application can easily
use.

T am not suggesting that other parallel file system implementors decided to balance I/O
performance against file management performance. It is more likely that they chose the file
system structure that most effectively gave them a parallel Unix-like file system.

106

6.1 Future Work

We have answered the most important questions about parallel interleaved file
systems, but several open questions remain.

e Our choice of the Elementary File System as Bridge’s LF'S, and our insis-
tence on leaving the EFS program interface intact, support our argument
that a PIF'S is not dependent on the idiosyncrasies of a popular file system.
We achieved excellent results with the spartan set of file operations EFS
has in common with typical file systems, but it would be interesting to
test the performance of a PIFS with a file system designed as an LFS.

o Our original goal was to show that a 32-processor file system was practical.
We now know that our goal was much too low. Analysis suggests that a
machine with fast IPC can support more than 100 processors in the file
system. This result should be tested experimentally.

e We know that tools are hard to write. We guess that they would be
easier to write in a programming language designed specifically for parallel
computers.

All these questions suggest directions for future work. Our analysis found
that a PIFS would work well with 128, 512, and even 4096 processors, but
our tests were constrained to 32 processors. For completeness sake our analy-
sis should be tested with an implementation on at least 128 processors. The
hardware requirements for this research are obviously extensive.

The PIFS analysis should be further checked by implementation with phys—
ical disk drives and several different LFSs.

We have ignored system throughput in favor of single-thread performance.
There are a host of interesting questions relating to concurrent use of a PIFS
by many unrelated processes; for instance, can the PIF Server improve perfor-
mance by considering disk head position and LFS caching when it dispatches
1/O requests to LFSs?

File system tools have proven difficult to write. This makes them impractical
for tasks that are not I/O bound and time-critical. If tools were easier to write,
they might be more generally useful. A library of functions for tool construction
would be helpful, but library functions tend to be somewhat general. How much
would loss of detailed control of parallelism hurt tool performance? Are explicitly
parallel message-passing programming languages such as Lynx [Scott, 1987], SR
[Andrews, 1982], and CSP [Hoare, 1985] suitable for tool construction?

Bridge used a slow LFS and never ran on high-performance processors. It
might not contribute much to computer science research, but it would be very

107

interesting to see how fast a PIFS would run a sort with 128 100 mhz 88000
processors and matching RAID storage.

108

Bibliography

[Andrews, 1982] G. R. Andrews, “The Distributed Programming Language
SR—Mechanisms, Design and Implementation,” Software—Practice and Ez-
perience, 12:719-753, 1982.

[Bashe et al., 1981] C.J. Bashe, W. Buchholz, B. V. Hawkins, J. J. Ingram, and
N. Rochester, “The Architecture of IBM’s Early Computers,” IBM Journal
of Research and Development, 25(5):363-375, September 1981.

[BBN, 1986] “Butterflyrm Parallel Processor Overview,” Technical Report 6149,
Version 2, BBN Laboratories, June 1986.

[BBN, 1987] BBN Advanced Computers Inc., Chrysalis Programmers Manual,
April 1987.

[Beck et al., 1988] Micah Beck, Dina Bitton, and W. Kevin Wilkinson, “Sorting
Large Files on a Backend Multiprocessor,” IEEE Transocations on Comput-
ers, 37(7):769-778, July 1988. '

[Bitton et al., 1983] Dina Bitton, Haran Boral, David J. DeWitt, and W. Kevin
Wilkinson, “Parallel Algorithms for the Execution of Relational Database Op-
erations,” ACM Transactions on Database Systems, 8(3):324-353, September
1983.

[Bitton et al., 1984] Dina Bitton, David J. DeWitt, David K. Hsaio, and Jais-
hankar Menon, “A Taxonomy of Parallel Sorting,” ACM Computing Surveys,
16:287-318, September 1984.

[Boral and DeWitt, 1983] H. Boral and D. J. DeWitt, “Database Machines:
An Idea Whose Time Has Passed: A Critique of the Future of Database
Machines,” Technical Report 288, Technion, August 1983.

[CDC, 1986] CDC, “Hydra Parallel Transfer Disk Drive,” 1986.

[CDC 88, 1988] Control Data Corporation, Product Speczﬁca.tzon for Wren IV
SCSI Model 94171, ¢ edition, April 1988.

109

[cray, 1988] “The Cray Y-MP Computer System,” February 1988.
[cyberplus] “Cyberplus Software Summary”.

[DeWitt et al., 1986] David J. DeWitt, Robert H. Gerber, Goetz Graefe,
Michael L. Heytens, Krishna B. Kumar, and M. Muralikrishna, “GAMMA: A
High Performance Dataflow Database Machine,” Technical Report 635, De-
partment of Computer Sciences, University of Wisconsin — Madison, March
1986.

[DeWitt et al., 1987] David J. DeWitt, Shahram Ghandeharizadeh, Donovan
Schneider, Rajiv Jauhari, M. Muralikrishna, and Anoop Sharma, “A Sin-
gle User Evaluation of the Gamma Database Macliine,” In Kitsuegawa and
Tanaka, editors, Database Machines and Knowledge Base Machines, pages
370-386. Kluwer Academic Publishers, 1987.

[Dibble et al., 1988] Peter Dibble, Michael Scott, and Carla Ellis, “Bridge: A
High-Performance File System for Parallel Processors,” In Proceedings of the
Eighth International Conference on Distributed Computing Sy.stems, pages
154-161, June 1988.

[Dibble, 1986] Peter C. Dibble, “Benchmark Results for Chrysalis Functions,”
Technical Report BPR 18, University of Rochester Computer Science Depart-
ment, December 1986.

[DPT, 1989] DPT, “Distributed Processmg Technology Advertisement,” Byte,
14(6):75, June 1989.

[Ellis and Dibble, 1987] Carla Schlatter Ellis and Peter C. Dibble, “An Inter-
leaved File System for the Butterfly,” Technical Report CS-1987-4, Dept. of
Computer Science, Duke University, January 1987.

[Ellis and Kotz, 1989] Carla Schlatter Ellis and David Kotz, “Prefetching in File
Systems for MIMD Multiprocessors,” In Proceedings of the 1989 International
Conference on Parallel Processing, August 1989.

[Floyd, 1989] Richard Allen Floyd, Transparency in Ditributed File Systems,
PhD thesis, University of Rochester, 1989.

[Floyd, 1986] Rick Floyd, “Short-term File Reference Patterns in a UNIX En-
vironment,” Technical Report 177, Department of Computer Science, Uni-
versity of Rochester, March 1986.

[Flyno and Hadimioglu, 1988] R. J. Flynn and H. Hadimioglu, “A Distributed
Hypercube File System,” In The Third Conference on Hypercube Concurrent
Computers and Applications, January 1988.

110

[Fowler et al., 1988] Robert J. Fowler, Thomas J. LeBlanc, and John M. Mellor-
Crummey, “An Integrated Approach to Parallel Program Debugging and
Performance Analysis on Large-Scale Multiprocessors,” In ACM SIG-
PLAN/SIGOPS Workshop on Parallel and Distributed Debugging, pages 163—
173, May 1988, In ACM SIGPLAN Notices, 24(1), January 1989.

[Freeman and Perry, 1977] Donald E. Freeman and Olney R. Perry, I /O Design:
Data Management In Operating Systems, Hayden Book Company, 1977.

[Gallager, 1978] Robert G. Gallager, “Variations on a Theme of Huffman,”
IEEE Transactions on Information Theory, 1T-24(6):668-674, November
1978.

[Gamerl, 1987] Michael Gamerl, “Maturing Parallel Transfer Disk Technology
Finds More Applications,” Hardcopy, 7(2):41-48, February 1987,

[Garcia-Molina and Salem, 1988] Hector Garcia-Molina and Kenneth Salem, -
“The Impact of Disk Striping on Reliablility,” Technical report, Princeton
University Department of Computer Science, January 1988.

[Gibson et al., 1989] Garth A. Gibson, Lisa Hellerstein, Richard M. Karp,
Randy H. Katz, and David A. Patterson, “Failure Correction Techniques
for Large Disk Arrays,” In Third Internation Conference on Architectural
Support for Pragramming Languages and Operating Systems, pages 123-132,
April 1989.

[Gurwitz et al., 1986] R.F. Gurwitz, M. A. Dean, and R. E. Schantz, “Program-
ming Support in the Cronus Distributed Operating System,” In Proceedings of
the Sizth International Conference on Distributed Computmg Systems, pages
486-493, May 1986.

[Hillis, 1985] W. Daniel Hillis, The Connection Machine, The MIT Press, 1985.

[Hoare, 1985] C. A. R. Hoare, Communicating Sequential Processes, Prentice-
Hall, 1985.

[IBM, 1988] International Business Machines, IBM 360/370 Principles of Op-
eration, 1988.

[Katz et al., 1988] Randy H. Katz, John K. Ousterhout, David A. Patterson,
and Michael R. Stonebraker, “A Project on High Performance I/O Subsys-
tems,” IEEE Database Engineering Bulletin, 11(1):40-47, March 1988.

[Knuth, 1973] Donald Knuth, The Art of Computer Programming, Addison
Wesley, 1973.

111

[Kwan, 1986] Sai Choi Kwan, Ezternal Sorting: I/O Analysis and Parallel Pro-
cessing Techniques, PhD thesis, University of Washington, January 1986.

[Lampson, 1983] Butler W. Lampson, “Hints for Computer System Design,”
Operating Systems Review, 17(5):33-48, 1983.

[Mallett and Smith, 1989] Mark Mallett and Bud Smith, “Sun’s SPARCstation
1 and 3/80,” MIPS, June 1989.

[Manuel and Barney, 1986] Tom Manuel and Clifford Barney, “The Big Drag
on Computer Throughput,” Electronics, 59:51-53, November 1986.

[Masters, 1987] Del Masters, “Improve Disk Subsystem Performance With Mul-
tiple Serial Drives In Parallel,” Computer Technology Review, pages 76-77,
Summer 1987.

[McKusick et al., 1984] Marshall K. McKusick, William N. Joy, Samuel J. Lef-
fler, and Robert S. Fabry, “A Fast File System for Unix,” ACM Transactions
on Computer Systems, 2(3):181-197, August 1984.

[Ousterhout et al., 1985] J. Ousterhout, H. DaCosta, D. Harrison, J. Kunze,
M. Kupfer, and J. Thompson, “A Trace Driven Analysis of the UNIX 4.2
BSD File System,” Proceedings of 10th Symposium on Operating Systems
Principles, Operating Systems Review, 19(5):15-24, December 1985.

[Parnas and Siewiorek, 1975] D. L. Parnas and D. P. Siewiorek, “Use of the
Concept of Transparency in the Design of Hierachically Structured Systems,”
Commaunications of the ACM, 18(7):401-408, July 1975.

[Patterson et al., 1988] David A. Patterson, Garth Gibson, and Randy H. Katz,
“A Case for Redundant Arrays of Inexpensive Disks (RAID),” In Proceedings
of the 1988 ACM SIGMOD Conference, pages 109-116, June 1988.

[Pierce] Paul Pierce, “A Concurrent File System for a Highly Parallel Mass
Storage Subsystem,” In The Fourth Conference on Hypercube Concurrent
Computers and Applications.

[pyramid] “Pyramid Sales Literature”.

[Rinko-Gay and Varhol, 1989] William L. Rinko-Gay and Peter D. Varhol,
“SCSI: The Next-Generation Disk Standard?,” MIPS, June 1989.

[Salern and Garcia-Molina, 1984] K. Salem and H. Garcia-Molina, “Disk Strip-
ing,” Technical Report 332, EECS Department, Princeton University, De-
cember 1984.

112

[Salem and Garcia-Molina, 1986] Kenneth Salem and Hector Garcia-Molina,
“Disk Striping,” In IEEE 1986 Conference on Data Engineering, pages 336-
342, 1986.

[Satyanarayanan, 1981] M. Satyanarayanan, “A Study of File Sizes and Func-
tional Lifetimes,” In Proceedings of the 8th Sympostum on Operating System
Principles, pages 96-108. ACM, December 1981.

[Schantz, 1984] R. Schantz, “Elementary File System,” Technical Report DOS-
79, BBN, April 1984.

[Scott, 1987] Michael L. Scott, “Language Support for Loosely-Coupled Dis-
tributed Programs,” IEEE Transactions on Software Engineering, SE-
13(1):88-103, January 1987.

[Siewiorek et al., 1982] Daniel P. Siewiorek, C. Gordon Bell, and Allen Newell,
Computer Structures: Principles and Ezamples, McGraw-Hill, 1982.

[Snyder, 1986] Lawrence Snyder, “Type Architectures, Shared Memory and the -
Corollary of Modest Potential,” Annual Review of Computer Science, 1, 1986.

[Thomas and Toner, 1984] Bob Thomas and Steve Toner, “The Elementary File
System,” Technical Report DOS-79, Bolt Beranek and Newman, April 1984.

[TMI, 1987] “Connection Machine Model CM-2 Technical Summary,” Technical
Report HA87-4, Thinking Machines Inc., April 1987.

[Valduriez and Gardarin, 1984] Patrick Valduriez and Georges Gardarin, “Jéin
and Simijoin Algorithms for a Multiprocessor Database Machine,” ACM
Transactions on Database Systems, 9(1):133-161, March 1984.

(Welch, 1984] Terry A. Welch, “A Technique for High Performance Data Com-
pression,” IEEE Computer, 17(6):8-19, June 1984.

[Witkowske et al., 1988] A. Witkowske, K. Chandrakumar, and G. Macchio,
“Concurrent I1/O System for the Hypercube Multiprocessor,” In The Third
Conference on Hypercube Concurrent Computers and Applications, January
1988.

113

