
Trials@uspto.gov Paper 9
Tel: 571-272-7822 Entered: January 14, 2016

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

SYMANTEC CORP.,
Petitioner,

v.

FINJAN, INC.,
Patent Owner.

Case IPR2015-01552
Patent 7,757,289 B2

Before THOMAS L. GIANNETTI, RICHARD E. RICE, and
MIRIAM L. QUINN, Administrative Patent Judges.

RICE, Administrative Patent Judge.

DECISION
Denying Institution of Inter Partes Review

37 C.F.R. § 42.108

I. INTRODUCTION

Petitioner Symantec Corporation filed a Petition (Paper 1, “Pet.”)

requesting an inter partes review of claims 10–12, 15, 17, 19–24, 35, 36, 38,

39, 41, 42, 44, and 45 (“the challenged claims”) of U.S. Patent No.

7,757,289 B2 (Ex. 1001, “the ’289 Patent”). Patent Owner Finjan Inc. filed

IPR2015-01552
Patent 7,757,289 B2

2

a Preliminary Response (Paper 8, “Prelim. Resp.”). We have jurisdiction

under 35 U.S.C. § 314, which provides that an inter partes review may not

be instituted “unless . . . there is a reasonable likelihood that the petitioner

would prevail with respect to at least 1 of the claims challenged in the

petition.” 35 U.S.C. § 314(a). As Petitioner has not shown a reasonable

likelihood that it would prevail with respect to at least one of the challenged

claims, we do not institute an inter partes review with respect to the ’289

Patent.

A. Related Proceedings

We are informed that Petitioner is named as a defendant in a federal

district court case involving the ’289 Patent (Finjan, Inc. v. Symantec Corp.,

Case No. 3:14-cv-02998-RS (N.D. CA)). Pet. 1. We also are informed that

Petitioner has filed petitions requesting inter partes review of U.S. Patent

Nos. 8,141,154 (IPR2015-01547); 8,015,182 (IPR2015-01548); 7,930,299

(IPR2015-01549), and 7,756,996 (IPR2015-01545 and IPR2015-01546).

See id.

B. The ’289 Patent

The ’289 Patent, titled “System and Method for Inspecting

Dynamically Generated Executable Code,” issued July 13, 2010 from

U.S. Application No. 11/298,475, filed December 12, 2005. Ex. 1001,

at (54), (45), (21), (22). The ’289 Patent seeks to solve problems posed by

dynamically generated viruses that “are themselves generated only at run-

time.” Id. at 3:31–35, 4:37–40. According to the Specification, a solution to

this problem involves using a gateway computer to inspect incoming

network content and to replace “original function calls” with “substitute

function calls” that enable the client computer to pass “function inputs” to a

IPR2015-01552
Patent 7,757,289 B2

3

security computer at run-time and to suspend processing of content pending

replies from the security computer. Id. at 4:64–5:2. The security computer

shields the client computer while the network content is being processed:

During run-time, while processing the network content, but
before the client computer invokes a function call that may
potentially dynamically generate malicious code, the client
computer passes the input to the function to the security
computer for inspection, and suspends processing the network
content pending a reply back from the security computer. Since
the input to the function is being passed at run-time, it has
already been dynamically generated and is thus readily
inspected by a content inspector.

Id. at 4:44–53.

The ’289 Patent describes a system that includes gateway computer

205 (including content modifier 265), client computer 210 (including

content processor 270), and security computer 215 (including input

inspector 275 and input modifier 285). Id. at 9:16–22. Figure 2 of the

’289 Patent, which depicts this system, is reproduced below.

IPR2015-01552
Patent 7,757,289 B2

4

Figure 2 is a simplified block diagram that illustrates a preferred

embodiment for protecting client computer 210 from dynamically generated

malicious executable code. Id. at 8:51–54. In the system depicted in

Figure 2, content modifier 265 of the gateway computer scans the original

content, identifies function calls, and replaces the original function calls with

substitute function calls. Id. at 9:18–50. Content modifier 265 identifies

function calls of the form

IPR2015-01552
Patent 7,757,289 B2

5

Id. at 9:26–30. Content modifier 265 modifies function calls (1) to

corresponding substitute function calls of the form

“whereby the call to Function() has been replaced with a call to

Substitute_function() . . . [and] the input intended for the original function is

also passed to the substitute function, along with possible additional input

denoted by “*”. Id. at 9:31–38.

Content processor 270 of the client computer processes the modified

content. Id. at 11:15–16. When content processor 270 invokes the

substitute function call, the function input is passed to security computer 215

for inspection. Id. at 11:15–19. Until security computer 215 returns its

inspection results to the client computer, processing of the modified content

is suspended. Id. at 11:19–21.

A specific problem that the ’289 Patent seeks to solve involves

“recursive levels of dynamic generation of malicious code, whereby such

code is generated via a series of successive function calls, one within the

next.” Id. at 5:4–6. As an example, the Specification describes function

call (5), which involves two levels of function:

Id. at 12:58–60. According to the Specification, function call (5) “first calls

Document.write() to generate the function call (3),” which is reproduced

below:

IPR2015-01552
Patent 7,757,289 B2

6

Id. at 12:7–9, 62–64.1 As further described in the Specification, function

call (5) “then calls Document.write() again to generate the JavaScript.” Id.

at 12:63–64. The problem posed by these two levels of function calls, as

stated in the Specification, is that: “If the inputs to each of the

Document.write() invocations in (5) are themselves dynamically generated

at run-time, then one pass through [the] input inspector may not detect the

JavaScript.” Id. at 12:64–67.

To solve this problem, input inspector 275 preferably passes inputs it

receives to input modifier 285, prior to scanning the input. Id. at 13:1–2.

“Input modifier [285] preferably operates similar to content modifier 265,

and replaces function calls detected in the input with corresponding

substitute function calls.” Id. at 13:3–5.

In the example above, when client computer 210 invokes the outer

call to Document.write() in (5), input test string (6), which is reproduced

below, is passed to security computer 215:

Id. at 13:5–13. Input modifier 285 detects the inner function call to

Document.write(), replaces it with a corresponding substitute function call,

and returns the modified input to client computer 210. Id. at 13:14–16.

Although input inspector 275 may not have detected the presence of the

1 Function call (3) “serves to instruct content processor 270 to insert the text
between the <hl >header tags into the HTML pages; namely the text
<SCRIPT> JavaScript</SCRIPT> which itself invokes the JavaScript
between the <SCRIPT>tags.” Id. at 12:10–14.

IPR2015-01552
Patent 7,757,289 B2

7

JavaScript in the first inspection, content processor 270 will invoke the

substitute function for Document.write() when it begins to process the

modified content on resumption of processing; and the substitute function

will pass the input of the inner Document.write() call of (5) to security

computer 215 for inspection. Id. at 13:17–29. “This time around input

inspector 275 is able to detect the presence of the JavaScript, and can

analyze it accordingly.” Id. at 13:29–31.

C. Illustrative Claim

 Claims 10, 19, 22, 35, and 41 are independent. Claims 11, 12, 15,

and 17 depend directly from claim 10; claims 20 and 21 depend directly

from claim 19; claims 23 and 24 depend directly from claim 22; claims 36,

38, and 39 depend directly from claim 35; and claims 42, 44 and 45 depend

directly from claim 41. Claim 10 is illustrative of the claimed subject

matter, and is reproduced below:

10. [Pre] A system for protecting a computer from
dynamically generated malicious content, comprising:

[A] a gateway computer, comprising:
[B] a gateway receiver for receiving content being sent to

a client computer for processing, the content including a call to
an original function, and the call including an input;

[C] a content modifier for modifying the received content
by replacing the call to the original function with a
corresponding call to a substitute function,

[D] the substitute function being operational to send the
input to a security computer for inspection; and

[E] a gateway transmitter for transmitting the modified
content from the gateway computer to the client computer;

[F] the security computer, comprising:
[G] a security receiver for receiving the input from the

client computer;

IPR2015-01552
Patent 7,757,289 B2

8

[H] an input modifier for modifying the input if the input
itself includes a call to a second original function with a second
input by replacing the call to the second original function with a
corresponding call to a second substitute function,

[I] the second substitute function being operational to
send the second input to the security computer for inspections;

[J] an input inspector for determining whether it is safe
for the client computer to invoke the original function; and

[K] a security transmitter for transmitting the modified
input to the client computer, if the input was modified by said
input modifier, and for

[L] transmitting an indicator of the determining to the
client computer; and

[M] a client computer communicating with said gateway
computer and with said security computer, comprising:

[N] a client receiver for receiving the modified content
from said gateway computer, for

[O] receiving the modified input, if the input was
modified by said input modifier, and for

[P] receiving the indicator from said security computer;
[Q] a content processor for processing the modified

content, and for
[R] invoking the original function only if the indicator

indicates that such invocation is safe; and
[S] a client transmitter for transmitting the input to said

security computer for inspection, when the substitute function is
invoked.

Id. at 18:59–19:36 (emphasis added); see Pet. 8–10 (designating

the recitations of claim 10 “[Pre]” and “[A]” through “[S],” as

shown above)

D. The Asserted Grounds

Petitioner challenges claims 10–12, 15, 17, 19–24, 35, 36, 38, 39, 41,

42, 44, and 45 of the ’289 Patent on the following grounds (Pet. 4):

IPR2015-01552
Patent 7,757,289 B2

9

 References Basis Claims Challenged

Calder2 and Sirer3 § 103(b)
10–12, 15, 17, 19–
24, 35, 36, 38, 39,
41, 42, 44, and 45

Ross4 and Calder § 103(a)
10–12, 15, 17, 19–
24, 35, 36, 38, 39,
41, 42, 44, and 45

In addition to Calder, Sirer, and Ross, Petitioner relies on the Declaration of

Jack W. Davidson, Ph.D. (Ex. 1009).

II. ANALYSIS

 We turn now to Petitioner’s asserted grounds of unpatentability to

determine whether Petitioner has met the threshold standard of 35 U.S.C.

§ 314(a) for instituting review.

A. Claim Construction

In an inter partes review, the Board gives claim terms in an unexpired

patent their broadest reasonable interpretation in light of the specification of

the patent in which they appear. 37 C.F.R. § 42.100(b); see also In re

2 U.S. Patent Application Publication No. 2002/0066022 A1 (Ex. 1003),
published May 30, 2002.
3 Emin Gün Sirer et al., Design and implementation of a distributed virtual
machine for networked computers, Association of Computing Machinery
(December 1999) (Ex. 1004). Petitioner relies on the Declaration of Sylvia
Hall-Ellis (Ex. 1005) and Exhibits 1007 and 1008 to establish that Sirer is a
printed publication that was publicly available by February 7, 2000. Pet. 3–
4.
4 U.S. Patent Application Publication No. 2007/0113282 A1 (Ex. 1002),
filed November 17, 2005, and published May 17, 2007. Petitioner asserts
that Ross is prior art to the challenged claims “under Pre-AIA 35 U.S.C.
§102(e).” Pet. 3.

IPR2015-01552
Patent 7,757,289 B2

10

Cuozzo Speed Techs., LLC, 793 F.3d 1268, 1278, 1279 (Fed. Cir. 2015).

Under the broadest reasonable interpretation standard, and absent any

special definition, claim terms are given their ordinary and customary

meaning, as would be understood by one of ordinary skill in the art in the

context of the entire disclosure. In re Translogic Tech., Inc., 504 F.3d 1249,

1257 (Fed. Cir. 2007). Any special definition for a claim term must be set

forth with reasonable clarity, deliberateness, and precision. In re Paulsen,

30 F.3d 1475, 1480 (Fed. Cir. 1994).

In this case, Petitioner proposes an express claim construction for the

term “dynamically generated.” Id. at 11–12. Patent Owner opposes

Petitioner’s proposed claim construction, but itself does not propose an

express construction. Prelim. Resp. 7–8. We do not resolve this claim

construction dispute between the parties, however, because none of our

determinations regarding Petitioner’s proposed grounds of unpatentability

requires us to interpret expressly the term “dynamically generated” or any

other claim term.

B. Asserted Obviousness

1. Legal Principles; Level of Skill in the Art

In an inter partes review, obviousness must be based on prior art

consisting of patents or printed publications. 35 U.S.C. § 311(b). A claim is

unpatentable for obviousness under 35 U.S.C. § 103(a) if the differences

between the subject matter sought to be patented and the prior art are such

that the subject matter as a whole would have been obvious at the time the

invention was made to a person having ordinary skill in the art (“POSA”) to

which the subject matter pertains. See KSR Int’l Co. v. Teleflex Inc., 550

U.S. 398, 406 (2007). A patent claim composed of several elements,

IPR2015-01552
Patent 7,757,289 B2

11

however, is not proved obvious merely by demonstrating that each of its

elements was known, independently, in the prior art. Id. at 418. In

analyzing the obviousness of a combination of prior art elements, it can be

important to identify a reason that would have prompted one of skill in the

art to combine the elements in the way the claimed invention does. Id. A

precise teaching directed to the specific subject matter of a challenged claim

is not necessary to establish obviousness. Id. Rather, “any need or problem

known in the field of endeavor at the time of invention and addressed by the

patent can provide a reason for combining the elements in the manner

claimed.” Id. at 420. The question of obviousness is resolved on the basis

of underlying factual determinations, including: (1) the scope and content of

the prior art; (2) any differences between the claimed subject matter and the

prior art; (3) the level of skill in the art; and (4) objective evidence of

nonobviousness, i.e., secondary considerations, when in evidence. Graham

v. John Deere Co., 383 U.S. 1, 17–18 (1966).

Here, Petitioner defines the level of skill in the art as follows:

A person of ordinary skill in the art (“POSITA”) . . . at
the time of the alleged invention of the ‘289 patent would
generally have a master’s degree in computer science, computer
engineering, or a similar [field], or a bachelor’s degree in
computer science, computer engineering, or a similar field, with
approximately two years of experience in the fields of
networking and anti-malware development, computer security
or equivalent work experience. Additional graduate education
might substitute for experience, while significant experience in
the field of computer programming, networking, and/or
malicious code might substitute for formal education.

IPR2015-01552
Patent 7,757,289 B2

12

Pet. 11 (Ex. 1009 ¶ 29). Patent Owner does not dispute Petitioner’s

definition of the level of skill in the art, with which we agree, and we adopt

it for purposes of our Decision.

2. Calder and Sirer

In arguing that that claims 10–12, 15, 17, 19–24, 35, 36, 38, 39, 41,

42, 44, and 45 of the ’289 Patent would have been obvious over Calder and

Sirer, Petitioner asserts that independent claims 19, 22, 35, and 41 are each

directed to a subset of the claim limitations found in independent claim 10,

including limitation [H] (identified supra in Section I.C). See id. at 7–10,

16–39. Below, we focus our obviousness analysis on limitation [H] of

claim 10, which pertinently recites “modifying the input if the input itself

includes a call to a second original function with a second input by replacing

the call to the second original function with a corresponding call to a second

substitute function.”

a. Overview of Calder and Sirer

As characterized by Petitioner, “Calder teaches a pre-processor

module that generates a modified application binary[5] by scanning

program code for system calls (original functions) and rewriting the

program code to trap the call to an interception module (a substitute

function) instead.” Pet. 12 (citing Ex. 1003, Abstract, Fig. 2). The

interception module, Petitioner asserts, is the entry point to a virtual

machine that provides virtual interfaces (e.g., filesystem, network,

5 Calder uses interchangeably the terms “application binary” and
“application program.” Ex. 1003 ¶ 76.

IPR2015-01552
Patent 7,757,289 B2

13

registry) to the client for executing the modified application. Id. at

12–13 (citing Ex. 1003 ¶¶ 88, 77, 85, Fig. 4; Ex. 1009 ¶¶ 68–72). By

initially intercepting part or all of the application interface (“API”)

routines, the interception module can prevent an application program

from improperly modifying or accessing data from the client

computer. Id. at 13–14 (citing Ex. 1003 ¶¶ 86–87; Ex. 1009 ¶ 74).

Petitioner contends that, to the extent “a separate, remotely located

‘security computer’ for performing the inspection of the hooked functions

and inputs” is not disclosed by Calder, this feature is disclosed by Sirer. Id.

at 14 (citing Ex. 1009 ¶¶ 75–78). As characterized by Petitioner, “Sirer

describes a distributed virtual machine (DVM) architecture where ‘system

services, such as verification, security enforcement, compilation and

optimization, are factored out of clients and located on powerful network

servers.’” Id. (citing Ex. 1004, Abstract). According to Petitioner, “Sirer

teaches using a security service to ‘check user-supplied arguments to system

calls.’” Id. (citing Ex. 1004, 3).

b. Petitioner’s Arguments

Petitioner contends that Calder discloses limitation [H] of claim 10.

Pet. 25–28.6 According to Petitioner, Calder discloses “initially replacing an

application’s system calls with substitute calls to an interception module

[and] . . . also explains that a potentially malicious application may attempt

to incorporate code dynamically (i.e., code that is not subject to the initial

check).” Id. at 25. Petitioner further asserts:

6 Petitioner does not rely on Sirer for limitation [H] of claim 10. See Pet.
25–28.

IPR2015-01552
Patent 7,757,289 B2

14

To address this, Calder teaches that the same replacement
process is performed on any code that is dynamically generated
by the application. More specifically, Calder teaches “scanning
the dynamically generated code, that is created by the
application, for code sequences that cause the computer to trap
to the operating system, and means for modifying the code
sequences.”

Id. (citing Ex. 1003 ¶¶ 15, 19; Ex. 1009 ¶ 105).

Petitioner states that “this second level of scanning and replacement

occurs during runtime when the application attempts to make a memory

page executable as part of an intercepted ‘modify page permissions’ call.”

Id. (citing Ex. 1003 ¶ 198, Fig. 13). Figure 33 of Calder is reproduced

below.

IPR2015-01552
Patent 7,757,289 B2

15

IPR2015-01552
Patent 7,757,289 B2

16

Figure 33 of Calder “is a flowchart illustrating a process for

intercepting and virtualizing a modify page permissions routine [i.e., call]

that was invoked by the application 405.” Ex. 1003 ¶ 198.

Petitioner argues that “inputs to this call would include the memory

page to be modified and the permissions.” Pet. 25–26 (citing Ex. 1009

¶ 106). Petitioner further argues:

Once the modify page permission call is intercepted, Calder
teaches that “it is determined whether the application is
requesting to make the pages executable.” . . .

Calder explains that when an application package
attempts to make a memory page executable, the original
hooking and interception process is performed again in order to
prevent the application from jumping to the new page and
making improper system calls directly. In this case, the input
“pages are checked for improper sequences. Progressing to step
3350, the improper sequences are rewritten to be intercepted,
i.e., rewritten to call the interception routine.”

Id. at 26 (citing Ex. 1003 ¶¶ 199, 200); see Fig. 33. Petitioner reads

limitation [H] of claim 10 on the process illustrated in Figure 33 of Calder as

follows:

Accordingly Calder discloses that the interception module (i.e .,
input modifier) modifies the input (e.g., a memory page) which
includes a call to a second original function (e.g., another
system call), by replacing it with a call to a second substitute
function (i.e., a call back to the interception module).

Id. (citing Ex. 1009 ¶¶ 108–109).

 Alternatively, Petitioner asserts that “Calder also describes similar

techniques for rewriting DLL’s that are loaded during program execution.”

Id. Petitioner explains that, “[l]ike the memory pages, a DLL may not be a

part of the application binary but, rather, only accessed/loaded during run-

IPR2015-01552
Patent 7,757,289 B2

17

time, when instructed by the application.” Id. at 26–27 (citing Ex. 1003 ¶

98). Petitioner further explains that, because a malicious application could

use an un-modified DLL to make improper system calls, Calder teaches

initially loading a DLL for the interception module before any other DLL.

Id. at 27 (citing Ex. 1009 ¶ 110). Petitioner states:

Upon execution, the interception module is loaded first and
when the application attempts to load another DLL, Calder
teaches that “all DLL routines that are to be intercepted are
redirected to a wrapper routine to intercept them. The
interception module DLL performs its API patching for every
DLL that has been loaded.”

Id. (citing Ex. 1003 ¶ 105, Figs. 10, 11). Petitioner reads limitation [H] of

claim 10 on Calder’s interception of DLL routines as follows:

Calder discloses that the interception module (i.e., input
modifier) modifies the input variable (e.g., a DLL to be loaded)
which includes a call to a second original function (e.g., API
call), by replacing it with a call to a second substitute function
(i.e., a call back to the interception module).

Id. at 27–28 (citing Ex. 1009 ¶ 112).

c. Analysis

Limitation [H] of claim 10 requires modifying “the input” if the input

itself includes a call to a second original function with a second input by

replacing the call to the second original function with a corresponding call to

a second substitute function. The recitation of “the input” in limitation [H]

refers back to “an input” in limitation [B], which recites “a gateway receiver

for receiving content being sent to a client computer for processing, the

content including a call to an original function, and the call including an

IPR2015-01552
Patent 7,757,289 B2

18

input” (emphasis added). Thus, limitation [H] requires modifying the input

to an original function that includes a call to a second original function.

We are not persuaded by Petitioner’s arguments that Calder discloses

modifying the input to an original function that includes a call to a second

original function, as required by limitation [H] of claim 10. See Prelim.

Resp. 15–19. We agree that Calder discloses: (1) scanning an application

for code sequences that cause the computer to trap to the operating system,

and modifying the code sequences; and (2) scanning the dynamically

generated code that is created by the application for code sequences that

cause the computer to trap to the operating system, and modifying the code

sequences. See Pet. 25 (citing Ex. 1003 ¶¶ 15, 19); Ex. 1009 ¶ 105.

Petitioner has not explained sufficiently, however, why modifying the code

sequences of such dynamically generated code, as disclosed by Calder,

corresponds to modifying the input to an original function that includes a

call to a second original function, as the claim requires.

In particular, Petitioner has not persuaded us that Calder’s process for

intercepting and virtualizing a modify page permissions routine satisfies this

claim requirement. See Ex. 1003 ¶¶ 199–200, Fig. 33. Calder discloses that,

“[a]s part of invoking the modify page permissions routine, the application

identifies certain pages.” Ex. 1003 ¶ 199, Fig. 33. If the application

requests to make the pages executable, the pages are checked for improper

sequences, and the improper sequences are rewritten to call the interception

routine. Id. ¶ 200, Fig. 33. Petitioner does not identify where Calder

discloses that “inputs to [the modify page permissions call] would include

the memory page to be modified and the permissions,” as argued in the

Petition. Pet. 25–26, emphasis added, citing Ex. 1009 ¶ 106). See Ex. 1003

IPR2015-01552
Patent 7,757,289 B2

19

¶¶ 198–200, Fig. 33; see also Prelim. Resp. 16 (arguing “that Petitioner cites

to no evidence from Calder to support its position that a memory page could

be an input to a function”). Likewise, Dr. Davidson does not identify in his

Declaration where Calder discloses that the memory page to be modified is a

function input, but rather merely reiterates Petitioner’s conclusory argument.

Ex. 1009 ¶ 106.

Petitioner similarly has not persuaded us that Calder’s techniques for

rewriting DLLs that are loaded during program execution involve modifying

the input to an original function that includes a call to a second original

function, as required by limitation [H] of claim 10. See Pet. 26–28. As

disclosed in Calder, rewriting DLLs is part of the process for initializing an

application and patching the loaded libraries. Ex. 1003 ¶ 103. The process

involves loading into memory the libraries defined by the import tables of

the application, executing the initialization routine of the first DLL in the

import table (i.e., the DLL for the interception module7), and then patching

the loaded libraries. Id. ¶¶ 104, 105. In the process of patching the loaded

libraries, “all DLL routines that are to be intercepted are redirected to a

wrapper routine to intercept them,” and “[t]he interception module DLL

performs its API patching for every DLL that has been loaded.” Id. ¶ 105,

Figs. 9, 10. Petitioner does not identify where Calder discloses that “a DLL

to be loaded” is a function input, as argued in the Petition. See Pet. 27–28

7 Calder discloses inserting a DLL for the interception module into an import
table that lists all of the DLLs used by an application, such that the
interception module DLL is invoked prior to the other DLLs. Ex. 1003 ¶ 98.
“[S]ince the interception module is loaded and run first, the interception
module can patch and intercept all of the DLL calls before any of the
application package’s code (including DllMain() routines) are executed.” Id.

IPR2015-01552
Patent 7,757,289 B2

20

(citing Ex. 1009 ¶ 112); see also Prelim. Resp. 17 (arguing that “Calder

simply does not disclose an input variable including a call to an additional

function”). The cited paragraph of Dr. Davidson’s Declaration, moreover,

provides no information beyond reiterating Petitioner’s conclusory

argument. See Ex. 1009 ¶ 112.

For these reasons, we determine that Petitioner has not demonstrated a

reasonable likelihood of prevailing with respect to its challenge to claim 10

and dependent claims 11, 12, 15, and 17 as obvious over Calder and Sirer.

As independent claims 19, 22, 35, and 41, like independent claim 10, each

require limitation [H] (see Pet. 9), we also determine that Petitioner has not

demonstrated a reasonable likelihood of prevailing with respect to its

challenge to claims 19–24, 35, 36, 38, 39, 41, 42, 44, and 45 as obvious over

Calder and Sirer.

3. Ross and Calder

With respect to its challenge to claims 10–12, 15, 17, 19–24, 35, 36,

38, 39, 41, 42, 44, and 45 of the ’289 Patent as obvious over Ross and

Calder, Petitioner again argues that Calder discloses limitation [H] of

independent claims 10, 19, 22, 35, and 41.8 Id. at 48–49. For the reasons

discussed supra in connection with the combination of Calder and Sirer, we

are not persuaded that Calder discloses limitation [H]. Accordingly, we

determine that Petitioner has not demonstrated a reasonable likelihood of

prevailing with respect to its challenge to claims 10–12, 15, 17, 19–24, 35,

8 Petitioner does not rely on Ross for limitation [H]. See Pet. 48–49.

IPR2015-01552
Patent 7,757,289 B2

21

36, 38, 39, 41, 42, 44, and 45 of the ’289 Patent as obvious over Ross and

Calder.

III. CONCLUSION

For the foregoing reasons, we determine that Petitioner has not

established a reasonable likelihood of prevailing on its challenges to claims

10–12, 15, 17, 19–24, 35, 36, 38, 39, 41, 42, 44, and 45 of the ’289 Patent.

IV. ORDER

In consideration of the foregoing, it is hereby:

ORDERED that Petitioner’s Petition for an inter partes review of

claims 10–12, 15, 17, 19–24, 35, 36, 38, 39, 41, 42, 44, and 45 of

U.S. Patent No. 7,757,289 B2 as obvious over (i) Calder and Sirer and (ii)

Ross and Calder is denied, and no inter partes review will be instituted

pursuant to 35 U.S.C. § 314 as to any claim of that patent on any of the

grounds of unpatentability alleged by Petitioner in the Petition.

IPR2015-01552
Patent 7,757,289 B2

22

PETITIONER:

Joseph J. Richetti
Daniel A. Crowe
BRYAN CAVE LLP
joe.richetti@bryancave.com
dacrowe@bryancave.com

PATENT OWNER:

James Hannah
Jeffrey H. Price
KRAMER LEVIN NAFTALIS & FRANKEL LLP
jhannah@kramerlevin.com
jprice@kramerlevin.com

Michael Kim
FINJAN INC.
mkim@finjan.com

